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Equivalent Disk Allocations - Supplementary File

Nihat Altiparmak, Student Member, IEEE, and Ali Saman Tosun, Member, IEEE

1 ISOMETRIES OF DISK ALLOCATIONS

8 isometries in 2 dimensions are given in Figure 1 and in
Figure 2. Each square denotes a bucket and the number on
the square denotes the disk that the bucket is stored at. These
isometries are obtained by the rotations and reflections of the
initial allocation. Following theorem shows that rotation of a
periodic allocation is a periodic allocation.

Theorem A periodic disk allocation at+bj mod N produces
another periodic disk allocation:
e (N —=0)i 4+ aj +b(N — 1)mod N for 90° counter-
clockwise rotation,
e (N—a)i+(N—-0)j+ (a+0b)(IN —1)mod N for 180°
counter-clockwise rotation,
e bi+ (N —a)j +a(N — 1) mod N for 270° counter-
clockwise rotation.

Proof: Consider an N x N array with row index ¢ and
column index j; where 0 < 4,5 < N. If this array is rotated
by:

e 90° counter-clockwise, every entry at index (i,j) maps

to the entry at index (j, (N — 1 —1)),

o 180° counter-clockwise, every entry at index (4, j) maps

to the entry at index (N — 1 —14),(N —1—j)),

e 270° counter-clockwise, every entry at index (i, j) maps
to the entry at index (N—1—j), (N—1)—(N—-1—1i)) =

((N -1 _])77’)

Now consider the disk allocation az + bj mod N. Substi-
tution of the index (4, j) with the new index found above for
the rotation of:

e 90° results in the allocation aj +b(N —1—4) mod N =
—bi+aj+bN —b(N —b)i+aj+bmod N = (N —
b)i +aj + b(N — 1) mod N,
o 180° results in the allocation (N —1—1i)+b(N —1 —
j)mod N = (N—a)i+(N—-0b)j+(a+b)(N—1) mod N,
o 270° results in the allocation a(N —1—j)+bi mod N =
bi+ (N —a)j +a(N — 1) mod N.
The proof follows by Property 1 and by the fact that adding
a constant to a periodic disk allocation does not affect its
periodicity. O
Property 1: If ged(a, N) =1 then ged(N —a,N) =1

e N. Altiparmak and A. S. Tosun are with the Department of Computer
Science, University of Texas at San Antonio, San Antonio, Texas, 78249.

Following theorem shows that reflection of a periodic allo-
cation is a periodic allocation.

Theorem A periodic disk allocation ai+bj mod N produces
another periodic disk allocation:
e (N—a)i+bj+a(N—1)mod N for the reflection along
the x axis,
e ai+(N—0)j+b(N—1)mod N for the reflection along
the y axis,
o (N=0)i+ (N —a)j+ (a+Db)(N —1)mod N for the
reflection along the line y = x,
e bi+aj mod N for the reflection along the line y = —x.

Proof: Consider an N x N array with row index ¢ and
column index j; where 0 < 7,7 < N. If this array is reflected
along:

o the z axis, every entry at index (4,7) maps to the entry
at index (N — 1 —1),7),

o the y axis, every entry at index (¢, j) maps to the entry
at index (i, (N — 1 —j5)),

o the line y = x, every entry at index (7,j) maps to the
entry at index ((N —1—j), (N —1—1)),

o the line y = —x, every entry at index (7, j) maps to the
entry at index (j,1).

Now consider the disk allocation az + bj mod N. Substi-
tution of the index (7, j) with the new index found above for
the reflection along:

o the z axis results in the allocation a(N — 1 —14)+bj mod

N=(N—-a)i+bj+a(N—1)modN,

o the y axis results in the allocation ai+b(N — 1 — j) mod
N=ai+(N—-b)j+bN —1)modN,

o the line y = « results in the allocation a(N — 1 — j) +
BN —1—i)mod N = (N —b)i + (N —a)j + (a +
b)(N — 1) mod N,

o theline y = —x results in the allocation aj+bi mod N =
bt + aj mod N.

The proof follows by the same argument as in the proof of

the previous Theorem. I

2 FURTHER RELATED WORK

Given the established bounds on the extra cost and the impos-
sibility result, a large number of declustering techniques have
been proposed to achieve performance close to the bounds
either on the average case [2], [7]-[15], [17], [18] or in the
worst case [1], [3]-[5], [19]. While initial approaches in the
literature were originally for relational databases or cartesian
product files, recent techniques focus more on spatial data
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Fig. 1. Counter-clockwise(CCW) rotations of the disk allocation 7 + 7 mod 5

(d) CCW by 270°
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Fig. 2. Reflections of the disk allocation i 4+ j mod 5

declustering. Each of these techniques is built on a uniform
grid, where the buckets of the grid are declustered using
the proposed mapping function. Techniques for uniform grid
partitioning can be extended to nonuniform grid partitioning
as discussed in [16] and [6].

3 DISTRIBUTION OF ¢(N)
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The values for ¢(N) up to 500 is given in Figure 3.

4 DETAILS OF COMPUTING ADDITIVE ERROR

Additive error of a range query is defined as the difference
between the actual and the optimal retrieval cost. In order
to calculate the additive error of a disk allocation scheme, we
need to find the maximum additive error over all possible range
queries. In a d dimensional disk allocation scheme with N
number of disks there are (N ;’ 1)d possible rectangular range
queries; however, if the allocation scheme is periodic, we do
not need to consider all of these queries. All k1 X ko X ... X kg
range queries have the same additive error using Theorem 5.1.
This reduces the number of queries to be considered to N¢.

By using O(N?) space and a brute force approach with
N disks in d dimensions, additive error of a range query
is calculated in O(N?) time and therefore; additive error of
a disk allocation scheme is calculated in O(N??) time. For
example, when d = 2 an ¢ x j query will require (i X j + N)
calculation; (i x j) to traverse the buckets of the query, (V)
to find the number of time that each disk is used. Since
we have N2 queries, we will need Zfil Zjvzl (itxj+N)
calculations in total, which is O(N*). However, it is possible
to fasten the calculation of the additive error by using more
space. If we use O(N<*1) space, we can calculate the additive
error of a query in O(N) time not depending on the number of
dimensions. In that case, we can calculate the additive error of
a disk allocation scheme in O(N?*1) time instead of O(N2?)
time. The basis of the structure to calculate the additive error
of a disk allocation scheme in O(N9*1!) time comes from set
theory. In the following example, we will show this process
for 1 disk, Diskgy, and two dimensions, d = 2; however, it
can be applied to any number of disks and dimensions easily.

In Figure 4(a), we have a 5 x 5 declustering scheme using
5 disks such that bucket (0,0) is stored in Disko and bucket
(0,1) is stored in Disk; etc. Figure 4(b) shows four range
queries Ay, As, Az, Ay. Additive error of a range query is
calculated by using the following equation:

b

Max(Count(Disky), ..., Count(Diskn_1)) — [N] (1)

such that Count(Disk;) calculates the number of buckets
retrieved from Disk; within the related range query, b is the
total number of buckets in the query and N is the number
of disks in the system. Now, we will show how to compute
Count(Diskg) of the range query A, efficiently. The first step
is to create and initialize the matrix M; such that retrieving
a bucket from the related disk is represented by a 1, and not
retrieving a bucket from the related disk is represented by a 0
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Fig. 4. Time efficient additive error calculation

in the matrix. Figure 4(c) shows M; for Disky according to
the declustering scheme in Figure 4(a). Secondly, we create
the matrix My from M; such that each entry of My is set
with the number of buckets retrieved from the related disk for
the range query defined between (0,0) and the coordinates of
the related entry. M> is shown in Figure 4(d) for Disky. Note
that to compute additive error of the range query Ay, different
My and M5 matrices should be calculated as well for all the
other disks beside Disky; however, we do not show them
here. Algorithm 1 shows how to build these matrices from the
declustering scheme, Scheme, for N disks and 2 dimensions.
Once we construct the matrix My, we can calculate how many
buckets are retrieved from Diskq for the range query Ay as
follows:

As = (A1 + As + As + As) — ((A1 + A2) + (A1 + A3) — Ay)
= M>(3,3) — (M2(1,3) + M2(3,0) — M2(1,0))
—3-(2+1-1)=1 )

Algorithm 1 BuildMatrices2Dim(Scheme,N)

1: Initialize M; to all Os;

2: for : =0 to N do

3: for 5=0to N do

M. [i, j, Schemeli, j]] += 1;

: for i =0 to N do

for j =0 to N do

for k =0 to N do

Mz[i,j, k] += Mg[i— 1,7, k] —‘y—Mg[’i,j— 1,k] —MQ[i—
17j - 17 k]a

A

This calculation takes constant time for 1 disk, Diskg, but
it only gives how many buckets are retrieved from Disk for
the range query Ay. In order to calculate the additive error
of A4, we need to do this calculation for all N disks, get
the maximum of them and find the difference between this
maximum and the optimal retrieval cost. Therefore, calculating
the additive error of a rectangular range query takes O(N)
time by the help of the matrices we created.

For d dimensions and N disks, this approach requires
O(N?*!) time to build the matrix structures by using
O(N?*1) space. By using the matrix structures, it takes O(N)
time to calculate the additive error of a query. Since we have
N number of queries in a declustering scheme, this approach
yields O(N?*!) time to calculate the additive error of an
allocation scheme. This is the most time efficient method to

(c) Matrix My (d) Matrix M2

calculate the additive error of a disk allocation scheme to the
best of our knowledge, however; it is still exponential in d.
Therefore, decreasing the number of allocations to be consid-
ered by finding the equivalences of them is crucial. Table 1
shows the comparison of algorithms and time-memory trade-
off for calculating additive error of a declustering scheme.

TABLE 1
Complexity Comparisons of Additive Error Calculation

[ Allocation [  Algorithm | Time |  Space |
Non-periodic Brute Force O(N3%) O(N%)
P Using Matrices | O(NZ29TT) | O(N9TT)
Periodic Brute Force O(N?%) O(N%)
Using Matrices | O(NYT1) | O(N9FT)

5 THEOREM PROOFS
5.1

Theorem All &y X ko X ... X kg4 range queries of a periodic
allocation have the same additive error and threshold.

Proof of Theorem 1

Proof: Consider ki x ky X ... X k4 range queries in d
dimensions and let f(i1,io,...,iq) = (a1 * i1 + ag x iz +
...+ aq *i4) mod N be the corresponding disk allocation.
Consider two different queries with closest points to the
origin at (i1,42,...,4q) and (i1 + 1,72 + S2,...,%4 + Sq4)
respectively. f(i1 + 51,42+ S2,...,14+ Sq4) can be written as
flir,ia, ... iq) + ¢ mod N where ¢ = (a1 * $1 + a2 * $2 +
...+ ag*sq) mod N. This is a 1-1 function between the two
k1 X ko X ... X kg4 queries. Such a functions exists between
all k1 X ko X ... X kg range queries and all such queries have
the same additive error and threshold. M

5.2 Proof of Theorem 2

Theorem Let f(i1,42,...,i4) be a number-theoretic disk
allocation and h : Zy — Zy be a 1-1 function, then a spatial
range query Q can be retrieved with k disk accesses using
fli1,da,...,1q) if and only if the query Q can be retrieved
with k disk accesses using h(f(i1,i2,...,14))-

Proof: Let € be a disk id that appears &k times in query

Q. Since h is 1-1, h(e) appears k times in h(f(7,7)) and no
other disk id can appear more than k times (since h is 1-1).
Therefore the query Q can be retrieved with k disk accesses.
I
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5.3 Proof of Theorem 5
¢(N)+d*1) 1

Theorem ngnoo S(N)? dl
Proof:
_ (P G(N) +d— 1) % x (B(N)
N e = A dx (N
d
> erd(N)*

Noveo dlx g(N)E  dl

The highest degree term of the resulting polynomial in the
numerator of the fraction is cq¢(N)?, where ¢g = 1. Since
d(N) — oo as N — oo, by using the addition property of
limit, all the other fractions go to 0 except the one with ¢(N)?
nominator, which brings the constant %. M

5.4 Proof of Theorem 6
(¢(N)+d—1)
d -0

¢(N)?

lim
d—o00

Theorem

Proof:

d
k
(¢+d-1y Z crg(IV)
m-~—4d ]y —
d—oo (b(N)d d—oo d! * QZ/)(N)d
The result follows since the numerator of the fraction is

polynomial in d whereas the denominator is exponential. L]

5.5 Proof of Theorem 7

Theorem If ged(aj, N) =1, Vj, 1 < j < d, then the disk
allocation (a1, as, .. ..,aq) is performance equivalent
to the disk allocation (a1, as, ..., N — a;, ...aq).

Proof: Since gcd(aj, N) = 1, ged(N — aj,N) = 1.
So, (ai,a2,...,N — aj,...,aq) is a periodic disk alloca-
tion. Consider the disk allocation (a1, as, . . agq). The
bucket [i1,42,...,%,...,1q] is stored on disk (a; * i; +
as *ig + ...+ a; + ...+ aq * iq) mod N. Now consider
the disk allocation (a1,as,...,N — a;,...,aq). The bucket
[i1,92,..., N —ij,...,1q] is stored on disk (a; * i1+ ag*is+
coot(N—=a;)« (N —i;)+...+aq*ig) mod N which is equal
to (a1 *i1+ag*xis+...+a;%(N—ij)+...+aq*iqg) mod N.
By using this property we can find a 1-1 function that maps
queries according to the definition. O

.,CLj,.

Gy ey

5.6 Proof of Theorem 8

(@+d—2>
lim —<L 2 —¢

Theorem

Proof:
d—1
P(N) i
ek (—57)
= lim kX:;) ’

B(N)T ~ Nooo (d— D)1 x (V)T

This time the term with the highest degree is cqp(N)91.
By using the addition property of limit again, all the fractions
go to 0.

0

5.7 Proof of Theorem 9
G0 +i—2
(2,0

sy 0

lim
d— o0

Theorem

Proof:

Z Ch ( d)(év) )k
Jim ~—4L 2 — |jm =0 _
d—o0 gf)(N)d d—o0 (d — 1)' * QZ/)(N)d
Similarly, the numerator of the fraction is polynomial in d
whereas the denominator is exponential. LJ

d—1
k

(@1@(1—2)

6 DETAILS OF THE DECLUSTERING EXAMPLE

If two allocations have different additive error or threshold
they cannot be equivalent. When we look at the distribution
of additive error for 2 dimensional declustering of a 23 x 23
grid using 23 disks, we see that out of 11 disk allocations 4
of them yield additive error of 1, 4 of them yield additive
error of 2, 2 of them yield additive error of 3 and 1 of
them yields additive error of 5. (1,4) and (1,6) both yield
additive error of 2 since they are equivalent. The four disk
allocations that yield additive error of 1 are: (1,5),(1,7),(1,9)
and (1,10). Among these (1,7) and (1,10) are equivalent
using the following (77,7771 = 1) = (10,1) = (1, 10).
(1,5) and (1,9) are equivalent as well using the following
chain (5-1,5 %571 = 1) = (14,1) = (9,1) = (1,9).
Similarly (1,2) = (1,11) and (1,3) = (1,8). So, out of 11
disk allocations only 6 are nonequivalent.

7 FURTHER EXPERIMENTAL RESULTS

Figure 5 shows dimensionality vs the final reduced
set(Final ReducedSet) of allocations for the factor sizes of
4, 6, and 8. I'inal ReducedSet is the number of connected
components. The Final ReducedSet increases as the dimen-
sionality increases.

Figure 6 shows the dimensionality vs Fractionl for the
factor sizes of 4, 6, and 8. Fractionl is %‘i%@dset.
Fractionl is always less than 1 and decreases as the dimen-
sionality increases.

Figure 7 shows the dimensionality vs F'raction2 for the
factor sizes of 4, 6, and 8.

We also measured the time that our proposed Algorithm
takes. The machine we used has Intel Xeon E5205 Dual CPU
Dual Core processors with total of 4 cores; 2 cores in 2
separate socketed physical CPUs with each core sharing 6MB
cache with its sibling core. The machine has 1.86 GHz of
clock speed and 16GB of physical memory running on an
Ubuntu 8.04.04 LTS server operating system. The program
uses one core only. Figure 8 shows the dimensionality vs time
in seconds for the factor sizes of 2, 4, 6, and 8 respectively.
It is possible to observe the increase of time from the figures
as d and N increases.

71

We provide the distribution of additive error to give the reader
a better understanding. Distribution of additive error for the
dimensions of 2, 3 and 4 are given in Figure 9. For N = 41

Distribution of Additive Error
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Fig. 9. Distribution of additive error for 2, 3, and 4 dimensions

and N = 97, the distribution of additive error is given in
Figure 9(a) and Figure 9(b) respectively for 2 dimensional
disk allocations. For N = 41, 4 out of the 20 allocations
yield minimum additive error of 1 and additive errors of 4, 6,
7, 8 and 9 do not appear in the allocations. For N = 97,
minimum additive error is 2 and 17 out of 48 allocations
yield this minimum error. For N = 23 and N = 41, the
distribution of additive error is given in Figure 9(c) and
Figure 9(d) respectively for 3 dimensional disk allocations.
For N = 23, 6 out of 66 allocations yield minimum additive
error of 2 and additive errors of 1, 10, 12-15 and 17-32 do
not appear. For N = 41, minimum additive error is 3 and 27
out of 41 allocations yield this minimum error. For N = 17
and N = 23, the distribution of additive error is given in
Figure 9(e) and Figure 9(f) respectively for 4 dimensional
disk allocations. For N = 17, 5 out of 120 allocations yield
minimum additive error of 3 and additive errors of 1, 2, 11,
16, 17, 20-24, 26, 29-35, 37-51 and 53-102 do not appear.
For N = 23, minimum additive error is 4 and 12 out of 286
allocations yield this minimum error.

7.2 Distribution of Threshold

We provide the distribution of threshold to give the reader
a better understanding. Distribution of threshold for the di-
mensions of 2, 3 and 4 are given in Figure 10. For N = 41
and N = 97, the distribution of threshold is given in Fig-
ure 10(a) and Figure 10(b) respectively for 2 dimensional disk
allocations. For N = 41, 2 out of the 20 allocations yield
maximum threshold of 23 and thresholds of 2, 4, 6, 8, 10,
12, 14-16, 18 and 20-22 do not appear in the allocations. For
N = 97, maximum threshold is 45 and 1 out of 48 allocations
yield this maximum threshold. For N = 23 and N = 41,
the distribution of threshold is given in Figure 10(c) and
Figure 10(d) respectively for 3 dimensional disk allocations.
For N = 23, 6 out of 66 allocations yield maximum threshold
of 9 and thresholds of 2, 4, 6 and 8 do not appear. For
N = 41, maximum threshold is 15 and 3 out of 41 allocations
yield this maximum threshold. For N = 17 and N = 23,
the distribution of threshold is given in Figure 10(e) and
Figure 10(f) respectively for 4 dimensional disk allocations.
For N = 17, 2 out of 120 allocations yield maximum threshold
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Fig. 10. Distribution of threshold for 2, 3, and 4 dimensions
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of 7 and thresholds of 2, 4 and 6 do not appear. For N = 23,
maximum threshold is 7 and 20 out of 286 allocations yield
this maximum threshold.

REFERENCES

(1]

(2]

[3]

[4]
(5]

(6]

M. J. Atallah and S. Prabhakar. (Almost) optimal parallel block access
for range queries. In Proc. ACM PODS, pages 205-215, Dallas, Texas,
May 2000.

S. Berchtold, C. Bohm, B. Braunmuller, D. A. Keim, and H-P. Kriegel.
Fast parallel similarity search in multimedia databases. In Proc. ACM
SIGMOD, pages 1-12, 1997.

R. Bhatia, R. K. Sinha, and C.-M. Chen. Hierarchical declustering
schemes for range queries. In EDBT 2000, pages 525-537, Konstanz,
Germany, March 2000.

C.-M. Chen, R. Bhatia, and R. Sinha. Declustering using golden ratio
sequences. In /CDE, pages 271-280, 2000.

C.-M. Chen and C. T. Cheng. From discrepancy to declustering: Near
optimal multidimensional declustering strategies for range queries. In
Proc. ACM PODS, pages 29-38, Wisconsin, Madison, 2002.

P. Ciaccia and A.Veronesi. Dynamic declustering methods for parallel
grid files. In Proceedings of Third International ACPC Conference with
Special Emphasis on Parallel Databases and Parallel 1/0, pages 110-
123, Berlin, Germany, September 1996.

(71

(8]

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

N=97, 2 Dim.

Threshold messsss |

25 30 35 40

45

A 0 o N

2+

[ III II I

0 I ! !
5 10 15 20

Threshold
(b) 97 disks, 2 dimensions

Number of Allocations
w

N=41, 3 Dim.

50

"Threshold s

30 B

Number of Allocations

0 2 4 6 8 10 12 14 16
Threshold

(d) 41 disks, 3 dimensions

N=23, 4 Dim.

Threshold s
140 B
120 B
100 | -
80 | -
60 | B
40 B
20 |-

Number of Allocations

Threshold
(f) 23 disks, 4 dimensions

H. C.DuandJ. S. Sobolewski. Disk allocation for cartesian product files
on multiple-disk systems. ACM Trans. on Database Systems, 7(1):82—
101, March 1982.

C. Faloutsos and P. Bhagwat. Declustering using fractals. In Proceed-
ings of the 2nd International Conference on Parallel and Distributed
Information Systems, pages 18 — 25, San Diego, CA, Jan 1993.

C. Faloutsos and D. Metaxas. Declustering using error correcting codes.
In Proc. ACM PODS, pages 253-258, 1989.

H. Ferhatosmanoglu, D. Agrawal, and A. El Abbadi. Concentric
hyperspaces and disk allocation for fast parallel range searching. In
Proc. ICDE, pages 608-615, 1999.

S. Ghandeharizadeh and D. J. DeWitt. Hybrid-range partitioning strat-
egy: A new declustering strategy for multiprocessor database machines.
In VLDB, pages 481-492, August 1990.

S. Ghandeharizadeh and D. J. DeWitt. A performance analysis of alter-
native multi-attribute declustering strategies. In Proc. ACM SIGMOD,
pages 29-38, 1992.

J. Gray, B. Horst, and M. Walker. Parity striping of disc arrays: Low-
cost reliable storage with acceptable throughput. In Proc. VLDB, pages
148-161, August 1990.

M. H. Kim and S. Pramanik. Optimal file distribution for partial match
retrieval. In Proc. ACM SIGMOD, pages 173-182, Chicago, 1988.

J. Li, J. Srivastava, and D. Rotem. CMD: a multidimensional decluster-
ing method for parallel database systems. In Proc. VLDB, pages 3—14,
Vancouver, Canada, August 1992.

B. Moon, A. Acharya, and J. Saltz. Study of scalable declustering



MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

algorithms for parallel grid files. In Proc. of the Parallel Processing
Symposium, April 1996.

[17] S. Prabhakar, K. Abdel-Ghaffar, D. Agrawal, and A. El Abbadi. Cyclic
allocation of two-dimensional data. In /CDE, pages 94-101, Orlando,
Florida, 1998.

[18] S. Prabhakar, D. Agrawal, and A. El Abbadi. Efficient disk allocation
for fast similarity searching. In SPAA ‘9S8, pages 78-87, Mexico, June
1998.

[19] R. K. Sinha, R. Bhatia, and C.-M. Chen. Asymptotically optimal
declustering schemes for range queries. In 8th International Conference
on Database Theory, Lecture Notes in Computer Science, pages 144—
158, London, UK, January 2001. Springer.



