
MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Equivalent Disk Allocations - Supplementary File
Nihat Altiparmak, Student Member, IEEE, and Ali Şaman Tosun, Member, IEEE

✦

1 ISOMETRIES OF DISK ALLOCATIONS

8 isometries in 2 dimensions are given in Figure 1 and in
Figure 2. Each square denotes a bucket and the number on
the square denotes the disk that the bucket is stored at. These
isometries are obtained by the rotations and reflections of the
initial allocation. Following theorem shows that rotation of a
periodic allocation is a periodic allocation.

Theorem A periodic disk allocation ai+bj mod N produces
another periodic disk allocation:

• (N − b)i + aj + b(N − 1) mod N for 90◦ counter-
clockwise rotation,

• (N − a)i+ (N − b)j + (a+ b)(N − 1) mod N for 180◦

counter-clockwise rotation,
• bi + (N − a)j + a(N − 1) mod N for 270◦ counter-

clockwise rotation.

Proof: Consider an N × N array with row index i and
column index j; where 0 ≤ i, j < N . If this array is rotated
by:

• 90◦ counter-clockwise, every entry at index (i, j) maps
to the entry at index (j, (N − 1− i)),

• 180◦ counter-clockwise, every entry at index (i, j) maps
to the entry at index ((N − 1− i), (N − 1− j)),

• 270◦ counter-clockwise, every entry at index (i, j) maps
to the entry at index ((N−1−j), (N−1)−(N−1−i)) =
((N − 1− j), i).

Now consider the disk allocation ai + bj mod N . Substi-
tution of the index (i, j) with the new index found above for
the rotation of:

• 90◦ results in the allocation aj+ b(N − 1− i) mod N =
−bi + aj + bN − b(N − b)i + aj + b mod N = (N −
b)i+ aj + b(N − 1) mod N ,

• 180◦ results in the allocation a(N − 1− i) + b(N − 1−
j) mod N = (N−a)i+(N−b)j+(a+b)(N−1) mod N ,

• 270◦ results in the allocation a(N−1−j)+bimod N =
bi+ (N − a)j + a(N − 1) mod N .

The proof follows by Property 1 and by the fact that adding
a constant to a periodic disk allocation does not affect its
periodicity.
Property 1: If gcd(a,N) = 1 then gcd(N − a,N) = 1

• N. Altiparmak and A. Ş. Tosun are with the Department of Computer
Science, University of Texas at San Antonio, San Antonio, Texas, 78249.

Following theorem shows that reflection of a periodic allo-
cation is a periodic allocation.

Theorem A periodic disk allocation ai+bj mod N produces
another periodic disk allocation:

• (N−a)i+bj+a(N−1) mod N for the reflection along
the x axis,

• ai+(N− b)j+ b(N−1) mod N for the reflection along
the y axis,

• (N − b)i + (N − a)j + (a + b)(N − 1) mod N for the
reflection along the line y = x,

• bi+ aj mod N for the reflection along the line y = −x.

Proof: Consider an N × N array with row index i and
column index j; where 0 ≤ i, j < N . If this array is reflected
along:

• the x axis, every entry at index (i, j) maps to the entry
at index ((N − 1− i), j),

• the y axis, every entry at index (i, j) maps to the entry
at index (i, (N − 1− j)),

• the line y = x, every entry at index (i, j) maps to the
entry at index ((N − 1− j), (N − 1− i)),

• the line y = −x, every entry at index (i, j) maps to the
entry at index (j, i).

Now consider the disk allocation ai + bj mod N . Substi-
tution of the index (i, j) with the new index found above for
the reflection along:

• the x axis results in the allocation a(N−1− i)+bj mod
N = (N − a)i+ bj + a(N − 1) mod N ,

• the y axis results in the allocation ai+b(N−1− j) mod
N = ai+ (N − b)j + b(N − 1) mod N ,

• the line y = x results in the allocation a(N − 1 − j) +
b(N − 1 − i) mod N = (N − b)i + (N − a)j + (a +
b)(N − 1) mod N ,

• the line y = −x results in the allocation aj+bi mod N =
bi+ aj mod N .

The proof follows by the same argument as in the proof of
the previous Theorem.

2 FURTHER RELATED WORK

Given the established bounds on the extra cost and the impos-
sibility result, a large number of declustering techniques have
been proposed to achieve performance close to the bounds
either on the average case [2], [7]–[15], [17], [18] or in the
worst case [1], [3]–[5], [19]. While initial approaches in the
literature were originally for relational databases or cartesian
product files, recent techniques focus more on spatial data

MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

0
0

0

1

1
1

1
1 0

2
2

2
2

2

3
3

3
3

4
4

4
4

43

0

(a) Original

4
4

4
4

4

1
1

1
1

1

3
3

3
3

3

0
0

0
0

0

2
2

2
2

2
(b) CCW by 90◦

2
2

2
2

2

1
1

1
1

0
0

0
0

0

4
4

4

3
3

3
3
41

4 3
(c) CCW by 180◦

3
3

3
3

3

1
1

1
1

1

4
4

4
4

4

2
2

2
2

2

0
0

0
0

0
(d) CCW by 270◦

Fig. 1. Counter-clockwise(CCW) rotations of the disk allocation i+ j mod 5

1 2 304
1 02 3 4

0 1 243

0 12 3 4
0 1 2 3 4
(a) Along the x axis

0

1

2

3

41

0
2

3

4 0

1

2
4

3

1

2

3

4

0
0

1

2

3

4

(b) Along the y axis

0
1

2

2
3

4

0

3
41
02

0
1

2

4

3 1

3
4

0

1
2

3
4

(c) Along the line y = x

4

31
4

1
3

0
2

4

0
2

3
1

2

3
01

0
2

4

0

1

2

3

4

(d) Al. the line y = −x

Fig. 2. Reflections of the disk allocation i+ j mod 5

declustering. Each of these techniques is built on a uniform
grid, where the buckets of the grid are declustered using
the proposed mapping function. Techniques for uniform grid
partitioning can be extended to nonuniform grid partitioning
as discussed in [16] and [6].

3 DISTRIBUTION OF φ(N)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

ph
i(N

)

N

Value of phi(N)

phi(N)

Fig. 3. φ(N) for N up to 500

The values for φ(N) up to 500 is given in Figure 3.

4 DETAILS OF COMPUTING ADDITIVE ERROR

Additive error of a range query is defined as the difference
between the actual and the optimal retrieval cost. In order
to calculate the additive error of a disk allocation scheme, we
need to find the maximum additive error over all possible range
queries. In a d dimensional disk allocation scheme with N

number of disks there are
(
N+1
2

)d
possible rectangular range

queries; however, if the allocation scheme is periodic, we do
not need to consider all of these queries. All k1×k2× . . .×kd
range queries have the same additive error using Theorem 5.1.
This reduces the number of queries to be considered to Nd.

By using O(Nd) space and a brute force approach with
N disks in d dimensions, additive error of a range query
is calculated in O(Nd) time and therefore; additive error of
a disk allocation scheme is calculated in O(N2d) time. For
example, when d = 2 an i× j query will require (i× j +N)
calculation; (i × j) to traverse the buckets of the query, (N)
to find the number of time that each disk is used. Since
we have N2 queries, we will need

∑N

i=1

∑N

j=1 (i× j +N)
calculations in total, which is O(N4). However, it is possible
to fasten the calculation of the additive error by using more
space. If we use O(Nd+1) space, we can calculate the additive
error of a query in O(N) time not depending on the number of
dimensions. In that case, we can calculate the additive error of
a disk allocation scheme in O(Nd+1) time instead of O(N2d)
time. The basis of the structure to calculate the additive error
of a disk allocation scheme in O(Nd+1) time comes from set
theory. In the following example, we will show this process
for 1 disk, Disk0, and two dimensions, d = 2; however, it
can be applied to any number of disks and dimensions easily.
In Figure 4(a), we have a 5× 5 declustering scheme using

5 disks such that bucket (0, 0) is stored in Disk0 and bucket
(0, 1) is stored in Disk1 etc. Figure 4(b) shows four range
queries A1, A2, A3, A4. Additive error of a range query is
calculated by using the following equation:

Max(Count(Disk0), . . . , Count(DiskN−1))− �
b

N
� (1)

such that Count(Diski) calculates the number of buckets
retrieved from Diski within the related range query, b is the
total number of buckets in the query and N is the number
of disks in the system. Now, we will show how to compute
Count(Disk0) of the range query A4 efficiently. The first step
is to create and initialize the matrix M1 such that retrieving
a bucket from the related disk is represented by a 1, and not
retrieving a bucket from the related disk is represented by a 0

MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

0
0

0

1

1
1

1
1 0

2
2

2
2

2

3
3

3
3

4
4

4
4

43

0

(a) Declustering scheme

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

A1 A2

A3 A4

(b) Range queries

1
1

1

0

0
0

0
0 1

0
0

0
0

0

0
0

0
0

0
0

0
0

00

1

(c) Matrix M1

1
2

3

1

2
2

4
1 4

1
1

3
2

5

1
1

3
2

1
1

1
3

21

2

(d) Matrix M2

Fig. 4. Time efficient additive error calculation

in the matrix. Figure 4(c) shows M1 for Disk0 according to
the declustering scheme in Figure 4(a). Secondly, we create
the matrix M2 from M1 such that each entry of M2 is set
with the number of buckets retrieved from the related disk for
the range query defined between (0,0) and the coordinates of
the related entry. M2 is shown in Figure 4(d) for Disk0. Note
that to compute additive error of the range query A4, different
M1 and M2 matrices should be calculated as well for all the
other disks beside Disk0; however, we do not show them
here. Algorithm 1 shows how to build these matrices from the
declustering scheme, Scheme, for N disks and 2 dimensions.
Once we construct the matrix M2, we can calculate how many
buckets are retrieved from Disk0 for the range query A4 as
follows:

A4 = (A1 + A2 + A3 + A4)− ((A1 +A2) + (A1 + A3)− A1)

= M2(3, 3)− (M2(1, 3) +M2(3, 0) −M2(1, 0))

= 3− (2 + 1− 1) = 1 (2)

Algorithm 1 BuildMatrices2Dim(Scheme,N)
1: Initialize M1 to all 0s;
2: for i = 0 to N do
3: for j = 0 to N do
4: M1[i, j, Scheme[i, j]] += 1;
5: for i = 0 to N do
6: for j = 0 to N do
7: for k = 0 to N do
8: M2[i, j, k] += M2[i−1, j, k]+M2[i, j−1, k]−M2[i−

1, j − 1, k];

This calculation takes constant time for 1 disk, Disk0, but
it only gives how many buckets are retrieved from Disk0 for
the range query A4. In order to calculate the additive error
of A4, we need to do this calculation for all N disks, get
the maximum of them and find the difference between this
maximum and the optimal retrieval cost. Therefore, calculating
the additive error of a rectangular range query takes O(N)
time by the help of the matrices we created.
For d dimensions and N disks, this approach requires

O(Nd+1) time to build the matrix structures by using
O(Nd+1) space. By using the matrix structures, it takes O(N)
time to calculate the additive error of a query. Since we have
Nd number of queries in a declustering scheme, this approach
yields O(Nd+1) time to calculate the additive error of an
allocation scheme. This is the most time efficient method to

calculate the additive error of a disk allocation scheme to the
best of our knowledge, however; it is still exponential in d.
Therefore, decreasing the number of allocations to be consid-
ered by finding the equivalences of them is crucial. Table 1
shows the comparison of algorithms and time-memory trade-
off for calculating additive error of a declustering scheme.

TABLE 1
Complexity Comparisons of Additive Error Calculation

Allocation Algorithm Time Space

Non-periodic Brute Force O(N3d) O(Nd)
Using Matrices O(N2d+1) O(Nd+1)

Periodic Brute Force O(N2d) O(Nd)
Using Matrices O(Nd+1) O(Nd+1)

5 THEOREM PROOFS

5.1 Proof of Theorem 1

Theorem All k1 × k2 × . . .× kd range queries of a periodic
allocation have the same additive error and threshold.

Proof: Consider k1 × k2 × . . . × kd range queries in d

dimensions and let f(i1, i2, . . . , id) = (a1 ∗ i1 + a2 ∗ i2 +
. . . + ad ∗ id) mod N be the corresponding disk allocation.
Consider two different queries with closest points to the
origin at (i1, i2, . . . , id) and (i1 + s1, i2 + s2, . . . , id + sd)
respectively. f(i1 + s1, i2 + s2, . . . , id + sd) can be written as
f(i1, i2, . . . , id) + c mod N where c = (a1 ∗ s1 + a2 ∗ s2 +
. . .+ ad ∗ sd) mod N . This is a 1-1 function between the two
k1 × k2 × . . . × kd queries. Such a functions exists between
all k1 × k2 × . . .× kd range queries and all such queries have
the same additive error and threshold.

5.2 Proof of Theorem 2

Theorem Let f(i1, i2, . . . , id) be a number-theoretic disk
allocation and h : ZN → ZN be a 1-1 function, then a spatial
range query Q can be retrieved with k disk accesses using
f(i1, i2, . . . , id) if and only if the query Q can be retrieved
with k disk accesses using h(f(i1, i2, . . . , id)).

Proof: Let ε be a disk id that appears k times in query
Q. Since h is 1-1, h(ε) appears k times in h(f(i, j)) and no
other disk id can appear more than k times (since h is 1-1).
Therefore the query Q can be retrieved with k disk accesses.

MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

 1

 10

 100

 1000

 10000

 100000

 1e+06

 2 4 6 8 10 12 14 16 18

of

 C
om

po
ne

nt
s

d

Dimension vs # of Components, Factor Size = 4

N=6
N=15
N=26
N=35
N=46
N=55
N=65
N=74
N=85
N=94

(a) Factor size 4

 1

 10

 100

 1000

 10000

 100000

 1e+06

 2 4 6 8 10 12 14 16 18

of

 C
om

po
ne

nt
s

d

Dimension vs # of Components, Factor Size = 6

N=12
N=20
N=28
N=44
N=50
N=63
N=68
N=75
N=92
N=99

(b) Factor size 6

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16

of

 C
om

po
ne

nt
s

d

Dimension vs # of Components, Factor Size = 8

N=24
N=30
N=40
N=42
N=54
N=56
N=66
N=70
N=78
N=88

(c) Factor size 8

Fig. 5. Dimension vs final remaining allocations

 0.1

 1

 2 4 6 8 10 12 14 16 18

fr
ac

tio
n(

co
m

ps
/e

qu
at

io
n)

d

Dimension vs Fraction1, Factor Size = 4

N=6
N=15
N=26
N=35
N=46
N=55
N=65
N=74
N=85
N=94

(a) Factor size 4

 0.1

 1

 2 4 6 8 10 12 14 16 18

fr
ac

tio
n(

co
m

ps
/e

qu
at

io
n)

d

Dimension vs Fraction1, Factor Size = 6

N=12
N=20
N=28
N=44
N=50
N=63
N=68
N=75
N=92
N=99

(b) Factor size 6

 0.1

 1

 2 4 6 8 10 12 14 16

fr
ac

tio
n(

co
m

ps
/e

qu
at

io
n)

d

Dimension vs Fraction1, Factor Size = 8

N=24
N=30
N=40
N=42
N=54
N=56
N=66
N=70
N=78
N=88

(c) Factor size 8

Fig. 6. Dimension vs Fraction1

 1e-10
 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1

 2 4 6 8 10 12 14 16 18

fr
ac

tio
n(

co
m

ps
/p

hi
(N

))

d

Dimension vs Fraction2, Factor Size = 4

N=6
N=15
N=26
N=35
N=46
N=55
N=65
N=74
N=85
N=94

(a) Factor size 4

 1e-10
 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001
 0.01

 0.1
 1

 2 4 6 8 10 12 14 16 18

fr
ac

tio
n(

co
m

ps
/p

hi
(N

))

d

Dimension vs Fraction2, Factor Size = 6

N=12
N=20
N=28
N=44
N=50
N=63
N=68
N=75
N=92
N=99

(b) Factor size 6

 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 2 4 6 8 10 12 14 16

fr
ac

tio
n(

co
m

ps
/P

hi
(N

))
d

Dimension vs Fraction2, Factor Size = 8

N=24
N=30
N=40
N=42
N=54
N=56
N=66
N=70
N=78
N=88

(c) Factor size 8

Fig. 7. Dimension vs Fraction2

 0.0001
 0.001
 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000
 1e+06

 2 4 6 8 10 12 14 16 18

tim
e(

se
c.

)

d

Dimension vs Time, Factor Size = 2

N=7
N=17
N=29
N=37
N=47
N=59
N=67
N=79
N=89
N=97

(a) Factor size 2

 0.0001
 0.001

 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000

 2 4 6 8 10 12 14 16 18

tim
e(

se
c.

)

d

Dimension vs Time, Factor Size = 4

N=6
N=15
N=26
N=35
N=46
N=55
N=65
N=74
N=85
N=94

(b) Factor size 4

 0.0001
 0.001
 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000

 2 4 6 8 10 12 14 16 18

tim
e(

se
c.

)

d

Dimension vs Time, Factor Size = 6

N=12
N=20
N=28
N=44
N=50
N=63
N=68
N=75
N=92
N=99

(c) Factor size 6

 0.0001
 0.001

 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000

 2 4 6 8 10 12 14 16

tim
e(

se
c.

)

d

Dimension vs Time, Factor Size = 8

N=24
N=30
N=40
N=42
N=54
N=56
N=66
N=70
N=78
N=88

(d) Factor size 8

Fig. 8. Dimension vs Time

MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

5.3 Proof of Theorem 5

Theorem lim
N→∞

(
φ(N)+d−1

d

)

φ(N)d
=

1

d!

Proof:

lim
N→∞

(
φ(N)+d−1

d

)

φ(N)d
= lim

N→∞

(φ(N) + d− 1) ∗ . . . ∗ (φ(N))

d! ∗ φ(N)d

= lim
N→∞

d∑

k=0

ckφ(N)k

d! ∗ φ(N)d
=

1

d!
(3)

The highest degree term of the resulting polynomial in the
numerator of the fraction is cdφ(N)d, where cd = 1. Since
φ(N) → ∞ as N → ∞, by using the addition property of
limit, all the other fractions go to 0 except the one with φ(N)d

nominator, which brings the constant 1
d! .

5.4 Proof of Theorem 6

Theorem lim
d→∞

(
φ(N)+d−1

d

)

φ(N)d
= 0

Proof:

lim
d→∞

(
φ(N)+d−1

d

)

φ(N)d
= lim

d→∞

d∑

k=0

ckφ(N)k

d! ∗ φ(N)d
= 0

The result follows since the numerator of the fraction is
polynomial in d whereas the denominator is exponential.

5.5 Proof of Theorem 7

Theorem If gcd(aj , N) = 1, ∀j, 1 ≤ j ≤ d, then the disk
allocation (a1, a2, . . . , aj , . . . , ad) is performance equivalent
to the disk allocation (a1, a2, ..., N − aj , ...ad).

Proof: Since gcd(aj , N) = 1, gcd(N − aj , N) = 1.
So, (a1, a2, . . . , N − aj , . . . , ad) is a periodic disk alloca-
tion. Consider the disk allocation (a1, a2, . . . , aj , . . . , ad). The
bucket [i1, i2, . . . , ij , . . . , id] is stored on disk (a1 ∗ i1 +
a2 ∗ i2 + . . . + aj + . . . + ad ∗ id) mod N . Now consider
the disk allocation (a1, a2, . . . , N − aj , . . . , ad). The bucket
[i1, i2, . . . , N − ij, . . . , id] is stored on disk (a1 ∗ i1+a2 ∗ i2+
. . .+(N−aj)∗(N−ij)+ . . .+ad∗id) mod N which is equal
to (a1 ∗i1+a2∗i2+ . . .+aj ∗(N−ij)+ . . .+ad ∗id) mod N .
By using this property we can find a 1-1 function that maps
queries according to the definition.

5.6 Proof of Theorem 8

Theorem lim
N→∞

(φ(N)
2 +d−2
d−1

)

φ(N)d
= 0

Proof:

lim
N→∞

(φ(N)
2 +d−2
d−1

)

φ(N)d
= lim

N→∞

d−1∑

k=0

ck(
φ(N)

2
)k

(d− 1)! ∗ φ(N)d
= 0

This time the term with the highest degree is cdφ(N)d−1.
By using the addition property of limit again, all the fractions
go to 0.

5.7 Proof of Theorem 9

Theorem lim
d→∞

(φ(N)
2 +d−2
d−1

)

φ(N)d
= 0

Proof:

lim
d→∞

(φ(N)
2 +d−2
d−1

)

φ(N)d
= lim

d→∞

d−1∑

k=0

ck(
φ(N)

2
)k

(d− 1)! ∗ φ(N)d
= 0

Similarly, the numerator of the fraction is polynomial in d

whereas the denominator is exponential.

6 DETAILS OF THE DECLUSTERING EXAMPLE

If two allocations have different additive error or threshold
they cannot be equivalent. When we look at the distribution
of additive error for 2 dimensional declustering of a 23× 23
grid using 23 disks, we see that out of 11 disk allocations 4
of them yield additive error of 1, 4 of them yield additive
error of 2, 2 of them yield additive error of 3 and 1 of
them yields additive error of 5. (1, 4) and (1, 6) both yield
additive error of 2 since they are equivalent. The four disk
allocations that yield additive error of 1 are: (1, 5),(1, 7),(1, 9)
and (1, 10). Among these (1, 7) and (1, 10) are equivalent
using the following (7−1, 7 ∗ 7−1 = 1) = (10, 1) = (1, 10).
(1, 5) and (1, 9) are equivalent as well using the following
chain (5−1, 5 ∗ 5−1 = 1) = (14, 1) = (9, 1) = (1, 9).
Similarly (1, 2) = (1, 11) and (1, 3) = (1, 8). So, out of 11
disk allocations only 6 are nonequivalent.

7 FURTHER EXPERIMENTAL RESULTS

Figure 5 shows dimensionality vs the final reduced
set(FinalReducedSet) of allocations for the factor sizes of
4, 6, and 8. FinalReducedSet is the number of connected
components. The FinalReducedSet increases as the dimen-
sionality increases.
Figure 6 shows the dimensionality vs Fraction1 for the

factor sizes of 4, 6, and 8. Fraction1 is FinalReducedSet
G(N,d) .

Fraction1 is always less than 1 and decreases as the dimen-
sionality increases.
Figure 7 shows the dimensionality vs Fraction2 for the

factor sizes of 4, 6, and 8.
We also measured the time that our proposed Algorithm

takes. The machine we used has Intel Xeon E5205 Dual CPU
Dual Core processors with total of 4 cores; 2 cores in 2
separate socketed physical CPUs with each core sharing 6MB
cache with its sibling core. The machine has 1.86 GHz of
clock speed and 16GB of physical memory running on an
Ubuntu 8.04.04 LTS server operating system. The program
uses one core only. Figure 8 shows the dimensionality vs time
in seconds for the factor sizes of 2, 4, 6, and 8 respectively.
It is possible to observe the increase of time from the figures
as d and N increases.

7.1 Distribution of Additive Error

We provide the distribution of additive error to give the reader
a better understanding. Distribution of additive error for the
dimensions of 2, 3 and 4 are given in Figure 9. For N = 41

MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10

N
um

be
r

of
 A

llo
ca

tio
ns

Additive Error

N=41, 2 Dim.

Error

(a) 41 disks, 2 dimensions

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25

N
um

be
r

of
 A

llo
ca

tio
ns

Additive Error

N=97, 2 Dim.

Error

(b) 97 disks, 2 dimensions

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30

N
um

be
r

of
 A

llo
ca

tio
ns

Additive Error

N=23, 3 Dim.

Error

(c) 23 disks, 3 dimensions

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

N
um

be
r

of
 A

llo
ca

tio
ns

Additive Error

N=41, 3 Dim.

Error

(d) 41 disks, 3 dimensions

 0

 5

 10

 15

 20

 0 20 40 60 80 100

N
um

be
r

of
 A

llo
ca

tio
ns

Additive Error

N=17, 4 Dim.

Error

(e) 17 disks, 4 dimensions

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250

N
um

be
r

of
 A

llo
ca

tio
ns

Additive Error

N=23, 4 Dim.

Error

(f) 23 disks, 4 dimensions

Fig. 9. Distribution of additive error for 2, 3, and 4 dimensions

and N = 97, the distribution of additive error is given in
Figure 9(a) and Figure 9(b) respectively for 2 dimensional
disk allocations. For N = 41, 4 out of the 20 allocations
yield minimum additive error of 1 and additive errors of 4, 6,
7, 8 and 9 do not appear in the allocations. For N = 97,
minimum additive error is 2 and 17 out of 48 allocations
yield this minimum error. For N = 23 and N = 41, the
distribution of additive error is given in Figure 9(c) and
Figure 9(d) respectively for 3 dimensional disk allocations.
For N = 23, 6 out of 66 allocations yield minimum additive
error of 2 and additive errors of 1, 10, 12-15 and 17-32 do
not appear. For N = 41, minimum additive error is 3 and 27
out of 41 allocations yield this minimum error. For N = 17
and N = 23, the distribution of additive error is given in
Figure 9(e) and Figure 9(f) respectively for 4 dimensional
disk allocations. For N = 17, 5 out of 120 allocations yield
minimum additive error of 3 and additive errors of 1, 2, 11,
16, 17, 20-24, 26, 29-35, 37-51 and 53-102 do not appear.
For N = 23, minimum additive error is 4 and 12 out of 286
allocations yield this minimum error.

7.2 Distribution of Threshold

We provide the distribution of threshold to give the reader
a better understanding. Distribution of threshold for the di-
mensions of 2, 3 and 4 are given in Figure 10. For N = 41
and N = 97, the distribution of threshold is given in Fig-
ure 10(a) and Figure 10(b) respectively for 2 dimensional disk
allocations. For N = 41, 2 out of the 20 allocations yield
maximum threshold of 23 and thresholds of 2, 4, 6, 8, 10,
12, 14-16, 18 and 20-22 do not appear in the allocations. For
N = 97, maximum threshold is 45 and 1 out of 48 allocations
yield this maximum threshold. For N = 23 and N = 41,
the distribution of threshold is given in Figure 10(c) and
Figure 10(d) respectively for 3 dimensional disk allocations.
For N = 23, 6 out of 66 allocations yield maximum threshold
of 9 and thresholds of 2, 4, 6 and 8 do not appear. For
N = 41, maximum threshold is 15 and 3 out of 41 allocations
yield this maximum threshold. For N = 17 and N = 23,
the distribution of threshold is given in Figure 10(e) and
Figure 10(f) respectively for 4 dimensional disk allocations.
ForN = 17, 2 out of 120 allocations yield maximum threshold

MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

 0

 1

 2

 3

 4

 5

 0 5 10 15 20

N
um

be
r

of
 A

llo
ca

tio
ns

Threshold

N=41, 2 Dim.

Threshold

(a) 41 disks, 2 dimensions

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 A

llo
ca

tio
ns

Threshold

N=97, 2 Dim.

Threshold

(b) 97 disks, 2 dimensions

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

N
um

be
r

of
 A

llo
ca

tio
ns

Threshold

N=23, 3 Dim.

Threshold

(c) 23 disks, 3 dimensions

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 A

llo
ca

tio
ns

Threshold

N=41, 3 Dim.

Threshold

(d) 41 disks, 3 dimensions

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 A

llo
ca

tio
ns

Threshold

N=17, 4 Dim.

Threshold

(e) 17 disks, 4 dimensions

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 A

llo
ca

tio
ns

Threshold

N=23, 4 Dim.

Threshold

(f) 23 disks, 4 dimensions

Fig. 10. Distribution of threshold for 2, 3, and 4 dimensions

of 7 and thresholds of 2, 4 and 6 do not appear. For N = 23,
maximum threshold is 7 and 20 out of 286 allocations yield
this maximum threshold.

REFERENCES

[1] M. J. Atallah and S. Prabhakar. (Almost) optimal parallel block access
for range queries. In Proc. ACM PODS, pages 205–215, Dallas, Texas,
May 2000.

[2] S. Berchtold, C. Bohm, B. Braunmuller, D. A. Keim, and H-P. Kriegel.
Fast parallel similarity search in multimedia databases. In Proc. ACM
SIGMOD, pages 1–12, 1997.

[3] R. Bhatia, R. K. Sinha, and C.-M. Chen. Hierarchical declustering
schemes for range queries. In EDBT 2000, pages 525–537, Konstanz,
Germany, March 2000.

[4] C.-M. Chen, R. Bhatia, and R. Sinha. Declustering using golden ratio
sequences. In ICDE, pages 271–280, 2000.

[5] C.-M. Chen and C. T. Cheng. From discrepancy to declustering: Near
optimal multidimensional declustering strategies for range queries. In
Proc. ACM PODS, pages 29–38, Wisconsin, Madison, 2002.

[6] P. Ciaccia and A.Veronesi. Dynamic declustering methods for parallel
grid files. In Proceedings of Third International ACPC Conference with
Special Emphasis on Parallel Databases and Parallel I/O, pages 110–
123, Berlin, Germany, September 1996.

[7] H. C. Du and J. S. Sobolewski. Disk allocation for cartesian product files
on multiple-disk systems. ACM Trans. on Database Systems, 7(1):82–
101, March 1982.

[8] C. Faloutsos and P. Bhagwat. Declustering using fractals. In Proceed-
ings of the 2nd International Conference on Parallel and Distributed
Information Systems, pages 18 – 25, San Diego, CA, Jan 1993.

[9] C. Faloutsos and D. Metaxas. Declustering using error correcting codes.
In Proc. ACM PODS, pages 253–258, 1989.

[10] H. Ferhatosmanoglu, D. Agrawal, and A. El Abbadi. Concentric
hyperspaces and disk allocation for fast parallel range searching. In
Proc. ICDE, pages 608–615, 1999.

[11] S. Ghandeharizadeh and D. J. DeWitt. Hybrid-range partitioning strat-
egy: A new declustering strategy for multiprocessor database machines.
In VLDB, pages 481–492, August 1990.

[12] S. Ghandeharizadeh and D. J. DeWitt. A performance analysis of alter-
native multi-attribute declustering strategies. In Proc. ACM SIGMOD,
pages 29–38, 1992.

[13] J. Gray, B. Horst, and M. Walker. Parity striping of disc arrays: Low-
cost reliable storage with acceptable throughput. In Proc. VLDB, pages
148–161, August 1990.

[14] M. H. Kim and S. Pramanik. Optimal file distribution for partial match
retrieval. In Proc. ACM SIGMOD, pages 173–182, Chicago, 1988.

[15] J. Li, J. Srivastava, and D. Rotem. CMD: a multidimensional decluster-
ing method for parallel database systems. In Proc. VLDB, pages 3–14,
Vancouver, Canada, August 1992.

[16] B. Moon, A. Acharya, and J. Saltz. Study of scalable declustering

MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

algorithms for parallel grid files. In Proc. of the Parallel Processing
Symposium, April 1996.

[17] S. Prabhakar, K. Abdel-Ghaffar, D. Agrawal, and A. El Abbadi. Cyclic
allocation of two-dimensional data. In ICDE, pages 94–101, Orlando,
Florida, 1998.

[18] S. Prabhakar, D. Agrawal, and A. El Abbadi. Efficient disk allocation
for fast similarity searching. In SPAA‘98, pages 78–87, Mexico, June
1998.

[19] R. K. Sinha, R. Bhatia, and C.-M. Chen. Asymptotically optimal
declustering schemes for range queries. In 8th International Conference
on Database Theory, Lecture Notes in Computer Science, pages 144–
158, London, UK, January 2001. Springer.

