IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.5, MAY 2016

Multithreaded Maximum Flow Based Optimal

1543

Replica Selection Algorithm for Heterogeneous

Storage Architectures

Nihat Altiparmak, Member, IEEE and Ali Saman Tosun, Member, IEEE

Abstract—Efficient retrieval of replicated data from multiple disks is a challenging problem, especially for heterogeneous storage
architectures. Recently, maximum flow based optimal replica selection algorithms were proposed guaranteeing the minimum retrieval
time in heterogeneous environments. Although optimality of the retrieval schedule is an important property, execution time of the replica
selection algorithm is also crucial since it might significantly affect the performance of the storage sub-system. Current replica selection
mechanisms achieve the optimal response time retrieval schedule by performing multiple runs of a maximum flow algorithm in a black-
box manner. Such black-box usage of a maximum flow algorithm results in unnecessary flow calculations since previously calculated
flow values cannot be conserved. In addition, most new generation multi-disk storage architectures are powered with

multi-core processors motivating the usage of multithreaded replica selection algorithms. In this paper, we propose multithreaded and

integrated maximum flow based optimal replica selection algorithms handling heterogeneous storage architectures. Proposed and
existing algorithms are evaluated using various homogeneous and heterogeneous multi-disk storage architectures. Experimental
results show that proposed sequential integrated algorithm achieves 5X speed-up in homogeneous systems, and proposed
multithreaded integrated algorithm achieves 21X speed-up using 16 threads in heterogeneous systems over the existing sequential

black-box algorithm.

Index Terms—Optimal replica selection, maximum flow, push-relabel, multithreading

1 INTRODUCTION

MASSIVE amounts of data is generated everyday
through sensors, Internet transactions, social net-
works, video surveillance systems, and scientific applica-
tions. Many organizations and researchers store this data
to enable breakthrough discoveries and innovation in sci-
ence, engineering, medicine, and commerce. Such mas-
sive scale of data poses new research problems called big
data challenges. As the amount of data grows, disk I/O
performance requires further attention since it can signifi-
cantly limit the performance and scalability of applica-
tions. Multi-disk distributed storage architectures have
emerged as a promising technology to address the chal-
lenges of scalable storage and efficient retrieval of grow-
ing data. Especially with the increase in performance gap
between processing power and storage device perfor-
mance, massively parallel I/O systems become crucial to
maintain the throughput of data intensive applications.
Applications performing space observation and imaging,
genomic sequencing, financial analysis, and computa-
tional fluid dynamics can generate files that are measured

e N. Altiparmak is with the Department of Computer Engineering and
Computer Science, University of Louisville, Louisville, KY 40292.
E-mail: nihat.altiparmak@louisville.edu.

o A.S. Tosun is with the Department of Computer Science, University of
Texas at San Antonio, San Antonio, TX 78249. E-mail: tosun@cs.utsa.edu.

Manuscript received 19 June 2014; revised 28 May 2015; accepted 23 June
2015. Date of publication 30 June 2015; date of current version 13 Apr. 2016.
Recommended for acceptance by B. Ravindran.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2015.2451620

in gigabytes and even terabytes, creating demand for
highly concurrent access and high data throughput.

Storage array is a well known example of a multi-disk
storage architecture. Besides having hundreds of disk
drives, a typical storage array includes controllers with
processing units and caching memories. A storage array
controller manages data mappings to the drives, simulta-
neously handling fault recovery and data retrieval function-
alities. Revenue for the enterprise storage array market
clearly indicates the usage trend of these devices as big data
challenges emerge. The total revenue for the first three quar-
ters of 2010 was $3.72 billion, an increase of 13 percent over
the same period in 2009 [1]. As of the first quarter of 2013,
this amount reached to $5.5 billion [2].

There are many high-end enterprise storage arrays exist-
ing in the market [3], [4], [5], [6]. Depending on the disk
drives they include, storage arrays can be homogeneous or
heterogeneous (hybrid). A homogeneous storage array is
composed of identical disk drives while a heterogeneous
storage array includes disks with different characteristics.
Recent improvements in flash density led academia and
industry to consider storage arrays partially or entirely based
on flash technology. Several homogeneous flash arrays [7],
[8], [9] and heterogeneous arrays combining magnetic and
flash disks have been launched recently [10], [11], [12].

As well as storage arrays, state-of-the-art storage systems
in both high-performance computing domain and enterprise
storage domain are typically distributed over a network com-
posed of multi-disk storage clusters. Set of I/O server nodes
connected to the multi-disk storage clusters are responsible
for serving disk requests of I/O clients or compute nodes

0018-9340 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1544

Client

Application Server

,/'

Compute Node

Network

Delay SAN/Cloud/Dedicated

Network

Disk
Queues

Hybrid

ybri HDD SSD
Storage Array Storage Array Storage Array

Fig. 1. Distributed and Heterogeneous storage arch.

that are running data intensive HPC applications [13]. Since
such storage clusters generally evolve over time, as newer
storage devices are added to them to expand the storage
capacity and older/failing storage devices are replaced, they
typically end up being heterogeneous in storage components.

The most crucial part of exploiting I/O parallelism is to
develop storage techniques that can access data in parallel.
Declustering or striping is a common technique for efficient
data distribution. Data space is partitioned into disjoint
regions (buckets/blocks/chunks) and distributed over mul-
tiple disks so that upcoming disk requests can be retrieved in
parallel. In addition to single replica declustering [14], [15],
[16], [17], many replicated declustering techniques were pro-
posed in the literature [18], [19], [20], [21], [22], [23]. Replica-
tion improves the retrieval performance using multiple
replicas of the data buckets. In addition to offering lower
response time, replication provides better fault-tolerance
and support for queries of arbitrary shape. Recently, full or
partial replication strategies are proven to be effective in
HPC clusters using parallel file systems [24], [25], [26], [27] as
well. Readers are directed to [28] for an in-depth comparison
and analysis of replicated declustering schemes.

Efficient retrieval of replicated data from multiple disks
is a challenging problem, especially for distributed and het-
erogeneous storage architectures. Given a disk request com-
posed of multiple data buckets (blocks/chunks) that are
replicated among multiple disks; the problem is finding a
retrieval schedule so that the response time (total retrieval
time) of the disk request is minimized. This problem is
called the optimal response time retrieval (replica selection)
problem and the solution should indicate the replica to be
used in retrieval for each data bucket. Fig. 1 illustrates the
challenges of this problem in distributed and heterogeneous
storage architectures, where variable initial load values
depending on the disk queue lengths, variable network
delays, storage device heterogeneity, and placement of the
replicas should be considered for the optimal retrieval
schedule. Optimal response time retrieval problem can be
solved in polynomial time using a maximum flow formula-
tion. Maximum flow based retrieval algorithms are pro-
vided for centralized homogeneous [29], [30], [31],
distributed homogeneous [32], and distributed heteroge-
neous [33] multi-disk storage architectures.

Deciding the retrieval schedule of a disk request is a time
critical issue since the execution time of the retrieval
algorithm can significantly affect the response time of the

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.5, MAY 2016

Storage System Idle Percentage

100%

80% -

60% -

40% -

Idle Percentage

Build Server

20%

MS Exchange Server
MS Live Maps Back End
MSN Storage Metadata
MSN File Server

MS

0%
Real World Applications

Fig. 2. Real world storage system idle percentages.

request. This affect will be directly visible on the response
time of a request if the storage system (the disks to be used in
retrieval) is idle when that request arrives. In order to investi-
gate the potential benefit of having a faster retrieval algo-
rithm, we calculated the idle storage percentages of real
world applications running inside Microsoft. These applica-
tions are Microsoft’s own enterprise and production servers,
and their storage traces are publicly available online [34]. As
shown in Fig. 2, the storage system is between 66 to 92 per-
cent idle while running these applications, which indicates
that the storage system will be idle with high probability
when a new request arrives at the system. Even if the storage
system is busy when a new request arrives, its response time
can be affected indirectly if the previous request is delayed
due to its execution time. This motivates us to investigate the
ways to improve the execution time of the retrieval algo-
rithms further for better overall storage system performance.

Current maximum flow based retrieval algorithms are
either integrated with an inefficient maximum flow calcula-
tion technique or they use maximum flow algorithms as a
black-box method without integrating it into the retrieval
algorithm. Such black-box usage of a max-flow calculation
results in unnecessary flow calculations since multiple runs
of max-flow is performed and previously calculated flows
are not conserved within consecutive max-flow runs due to
this black-box nature. In addition to this, most new genera-
tion storage arrays are powered with multi-core processors
and multithreaded retrieval algorithms can also be used to
reduce the execution time of retrieval algorithms even fur-
ther. In this paper, we propose sequential and parallel inte-
grated maximum flow algorithms for the optimal response
time retrieval problem. Our algorithms support distributed
and heterogeneous storage architectures while handling cen-
tralized and homogeneous cases as well. Earlier version of
this paper appeared in [35]. This paper included a multi-
threaded capacity setting algorithm, integration of the fastest
known sequential maximum flow algorithm, and extensive
evaluation of the proposed and existing retrieval algorithms
using simulations driven by real world storage workloads
on various homogeneous and heterogeneous multi-disk stor-
age configurations. Experimental results show that proposed
multithreaded integrated algorithm achieves an average of
7X speed-up over the algorithm proposed in the earlier ver-
sion of this paper, and an average of 21X speed-up over the
original sequential black-box algorithm proposed in [33] for
heterogeneous storage architectures using 16 threads. Fur-
thermore, our proposed sequential integrated algorithm
achieves an average of 5X speed-up over the existing algo-
rithm for homogeneous storage architectures.

ALTIPARMAK AND TOSUN: MULTITHREADED MAXIMUM FLOW BASED OPTIMAL REPLICA SELECTION ALGORITHM FOR HETEROGENEOUS...

TABLE 1
Notation
[Notation | Meaning |
N Number of disks
d Disk ID; where d = {0,1,...,N—2,N—1}
S Request size; number of buckets in the disk request
r Replication factor; number of replicas for each bucket
[i, jJ(k) | Replica k of the bucket in row i and column j of an i x j grid
G = (V,E)| A directed graph G with set of edges E and vertices V; u,v € V
Cy Average retrieval cost of a single bucket from disk d
Dy Network delay to reach disk d
X4 Initial load; time it takes for disk d to be idle if busy, O otherwise

2 PRELIMINARIES

In this section, we present the necessary background on rep-
licated desclustering, maximum flow algorithms, and maxi-
mum flow based replica selection techniques. The notation
used in the rest of the paper is summarized in Table 1.

2.1 Replicated Declustering

A replicated declustering of 7 x 7 grid using seven disks is
given in Fig. 3. The grid on the left represents the first rep-
lica and the grid on the right represents the second replica.
Each square denotes a data bucket and the number on the
square denotes the disk that bucket is stored at. Request R;
in Fig. 3 has six buckets. For retrieval of six buckets from a
centralized homogeneous storage array, the best we can
expect is [{] = [¢] = 1 disk access and this happens if the
buckets of the request are spread to the disks in a balanced
way. In most cases, this is not possible without replica-
tion [36]. When replication is used, each bucket is stored on
multiple disks and a single disk should be chosen for the
retrieval of each bucket. For instance, theoretically request
R; can be retrieved in 1 disk access. However, since the first
replica of the buckets [0,0](1) and [2, 1](1) are both stored in
Disk 0 as shown in Fig. 4, retrieval using the first replica
requires 2 accesses. When we consider both replicas, we can
retrieve R, in 1 access using the second replica of the bucket
[2,1](2) located in Disk 5.

2.2 Maximum Flow Problem

Maximum flow is a general technique used in optimal
response time retrieval problems [29], [30], [31], [32], [33].
An instance of the maximum flow problem is a flow net-
work G = (V, E, s,t, c), where G is a directed graph, s € V is
a distinguished vertex called the source, t € V' is a distin-
guished vertex called the sink, and cap is a capacity function
with cap(u,v) > 0 for every edge (u,v) € E. A flow is a pseu-
doflow that satisfies the flow conservation constraint:

YoeV —{s,t}: E flu,v) = E flo,u), (D)
ueV:(uv)el ueV:(vu)eE
and the capacity constraint:

Yu,v € Vi f(u,v) < cap(u,v). (2)
R R
0|1 |R[3]4]5]6 0|12 |3]4]5]6
3(4|p|6]0]1 |2 2(3|p|5]6]0]1
6 (0[]l [2]3]4]|5 4(5|p|0]|1]2]3
2[3]4|5]6|0]1 6 [0]1[2]3]|4]5
S5[6]0|1]2]3]4 1]2(3]4|5]6]|0
1]2(3]4[5]|6]0 3(4|5(6|0]1 |2
4(5]|6]0]1]2]3 506[0]1]2]3 |4

Fig. 3. Replicated declustering.

1545

Disk 0 Disk 1 Disk2 Disk3 Disk4 Disk5 Disk 6

Fig. 4. Placement of buckets on the disks for request R;.

Equations (1) and (2) state that for all vertices except the
source and the sink, the net flow leaving that vertex is zero
and an edge cannot carry a flow larger than its capacity.
Then, value of a flow f is the net flow into the sink as in
Equation (3):

2

veV:(v,t)eE

|f| = f(vvt)' 3)

In the maximum flow problem, the goal is sending as
much flow as possible between the source and the sink, sub-
ject to the capacity and flow conservation constraints. The
maximum flow problem has been studied for over 50 years. It
has a wide range of applications including the transshipment
and assignment problems. Known solutions include Ford-
Fulkerson augmenting path method [37], [38], closely related
blocking flow method [39], [40], network simplex method [41], [42],
and push-relabel method of Goldberg and Tarjan [43].

2.2.1 Ford-Fulkerson Method

The motivation behind the Ford-Fulkerson augmenting path
method is as follows: An augmenting path is a residual
s-t path. If there exists an augmenting path in G (residual
network of G' induced by f), then we can improve f by send-
ing flow along this path. Ford and Fulkerson [37] showed
that the converse is also true.

Theorem 1. A flow f is a maximum flow if and only if Gy has no
augmenting paths.

This theorem motivates the augmenting path algorithm
of Ford and Fulkerson’s [37], which repeatedly sends flow
along augmenting paths, until no such paths remain.

2.2.2 Push-Relabel Method

Push-relabel methods send flow along individual edges
instead of the entire augmenting path. This leads to a better
performance both in theory and practice [43]. The push-rela-
bel algorithm works with preflows, which is a flow that satis-
fies capacity constraints except additional flows into a
vertex is allowed called excess. A vertex with positive excess
is said to be active. Each vertex is assigned a height, where
initially all the heights are zero except height[s] = |V|. An
iteration of the algorithm consists of selecting an active ver-
tex, and attempting to push its excess to its neighbors with
lower heights. If no such edge exists, the vertex’s height is
increased by 1. The algorithm terminates when there are no
more active vertices with label less than |V].

2.3 Optimal Response Time Retrieval

In optimal response time retrieval problem, we have N disks
and S buckets. Each bucket can be replicated among multiple
disks. The aim is finding a retrieval schedule minimizing the
retrieval time of all buckets. Retrieval schedule includes the
disks where each bucket should be retrieved from and
retrieval (replica selection) algorithms are used to determine
the retrieval schedule. Note that the retrieval schedule is

1546

BUCKETS

DISKS
0

Fig. 5. BRP.

trivial if there is no replication in the system, in which there is
only one candidate disk that a bucket can be retrieved from.
Depending on the complexity of the system, the problem can
be classified as either the Basic Retrieval Problem (BRP) or
the Generalized Retrieval Problem (GRP).

2.3.1 Basic Retrieval Problem (BRP)

BRP assumes that all the disks in the system are homoge-
neous (Cy = C; = --- = Cy_1), network delays to reach the
disks are equivalent (Dy = Dy =---= Dy_1), and all the
disks are idle (Xg=X;=---=Xy_1 =0). In this case,
response time of the request is determined by the disk that
is used to retrieve the maximum amount of buckets. In other
words, we need to retrieve as few buckets as possible
from the disk that is used to retrieve the maximum amount
of buckets.

BRP can be solved as a max-flow problem using graph
theory [29]. Maximum flow representation of request R, pro-
vided in Fig. 3 is shown in Fig. 5. For each bucket and for
each disk we create a vertex. In addition, two more vertices
called source and sink are created. The source vertex s is con-
nected to all the vertices denoting the buckets and all the ver-
tices denoting the disks are connected to the sink vertex t. An
edge is created between vertex v, denoting bucket b and ver-
tex vy denoting disk d if bucket b is stored on disk d. Next
step is to set the capacities of the edges. Let A be the edge set
holding every edge e, between the disk vertex d and the sink
(disk edges; all the edges going to the sink). All the edges
except the ones in A have capacity 1. The capacity of the
edges in A are set to the theoretical lower bound for the num-
ber of disk accesses; [%} Since the request R; has 6 buckets
and there are 7 disks in the system, all the edges have capac-
ity 1 in this example. Now, we can run the max-flow.

As a result of running the maximum flow algorithm, if
the maximum flow value of S is reached, then it means
that all the buckets can be retrieved successfully. Other-
wise, we need to increment the capacities of all disk
edges (all the edges going into the sink) by one and re-run
the max-flow algorithm. We repeat this incrementation
process until the flow of S is achieved. Maximum flow is
shown using thick lines in Fig. 5. Flow information indi-
cates the replica to be chosen for the optimal response
time retrieval of request R;. In the worst case, max-flow
algorithm might run O(S) times; when all the buckets of a
request are stored at a single disk.

2.3.2 Generalized Retrieval Problem (GRP)

GRP generalizes BRP in a way that storage devices can be
heterogeneous, disks might have different network delays,
and they can have initial loads to be processed before han-
dling the current buckets. Consider the request R; given in

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.5, MAY 2016

TABLE 2
System Parameters

[Disk ID (@) | Cy (ms) | Dy (ms) | Xy (ms)

0-3 8.3 2 1
4 13.2 1 0
5-6 6.1 1 0

Fig. 3 again, but this time assume that the system parame-
ters are as in Table 2. GRP can also be solved using a max-
flow formulation [33]; however, the capacity setting pro-
cess of the disk edges in the edge set A is more complicated
this time. As in BRP, capacity of all the edges except the
ones in A are set to 1. However in GRP, we cannot initial-
ize or increment the capacities of the edges in A all
together. In BRP, since retrieval cost of the disks were
the same ((Cyo + Do + Xo) = (Cr + D1 + Xi) = -+ = (Cn—1+
Dy_1 + Xn_1)), it was possible to initialize and increment
the capacities of the edges is A all at the same time. How-
ever in GRP, retrieval costs of the disks might be different
depending on the heterogeneity (Cy), initial load (Xg), and
network delay (D,). Therefore, capacity setting and incre-
mentation steps of the algorithm should be performed con-
sidering the individual retrieval costs of the disks.

In order to set the capacity values of the edges in A effi-
ciently, [33] proposes Binary Capacity Scaling (BCS) and
Capacity Incrementation (CI) Algorithms. BCS is used to ini-
tialize the capacities by scaling them in binary steps and CI is
used to increment the capacities in an iterative step. BCS first
defines a range where the optimal response time is known to
be within this range. In each step, the algorithm picks the
middle value of this range, calculates the capacities of the
edges in A for this middle value, and runs the maximum
flow algorithm. Depending on the flow value, the algorithm
either decreases the top range or increases the bottom range
by half. After the range is small enough, BCS stops and CI
starts to execute with this initial capacity values calculated by
BCS. Clincrements the capacity of the edge yielding the mini-
mum cost by one and runs the max-flow algorithm after each
and every incrementation step until the flow of S is reached.
Fig. 6 shows the proper values of the capacities for the param-
eters defined in Table 2. Using these capacity values, the opti-
mal response time retrieval schedule of the request R; is
shown in Fig. 6 with thick lines. Readers are directed to [33]
for further detais on BCS and CI Algorithms.

2.4 Motivation

Deciding the retrieval schedule of a disk request is a time
critical issue since the execution time of the retrieval algo-
rithm can dramatically affect the response time of the
request. Any improvement on the execution time has a
potential effect on increasing the storage system perfor-
mance. Existing retrieval algorithms are either integrated
with an inefficient maximum flow calculation technique, or
use maximum flow algorithms as a black-box method with-
out integrating it into the retrieval algorithm. For instance,
BRP can be solved using a Ford-Fulkerson based integrated
retrieval algorithm proposed in [29]; however, push-relabel
method is known to be superior over the Ford-Fulkerson
method both in theory and practice [43]. Besides, this solu-
tion cannot handle GRP. On the other hand, the solution
proposed for GRP in [33] requires multiple maximum flow

ALTIPARMAK AND TOSUN: MULTITHREADED MAXIMUM FLOW BASED OPTIMAL REPLICA SELECTION ALGORITHM FOR HETEROGENEOUS...

BUCKETS

DISKS

Fig. 6. GRP.

runs using graphs with similar capacity values. However,
since the maximum flow calculation is performed as a
black-box technique, each run starts with zero flows all over
again. Actually, the algorithm increments the capacities
used in a previous run and current calculation can be build
on the flows calculated previously. This approach would
obviously save a considerable amount of flow calculations;
however, it requires an integrated maximum flow solution
for GRP. In addition to these, most new generation storage
arrays are powered with multi-core processors. Multi-
threaded algorithms for capacity setting and maximum
flow calculation steps should be investigated for better utili-
zation of the computing resources and possible execution
time improvement.

3 INTEGRATED RETRIEVAL ALGORITHMS

In this section, we present our maximum flow based
retrieval algorithms where the maximum flow calculation is
integrated into the retrieval algorithm in order to eliminate
unnecessary flow calculations. First, we provide the follow-
ing propositions to be used in optimizing the proposed
algorithms later:

Proposition 1. Let G = (V, E, s, t, ¢) be a flow network, which is
specifically constructed for the retrieval problem. Then, the
retrieval problem does not have a solution if:

Z cap(v,t) < S. 4)

veV:(vt)eE

Proof. Retrieval problem has a solution if the maximum
flow value equals to the number of buckets to be
retrieved such that |f| = S. In order to achieve the maxi-
mum flow of S, we need at least total of S capacities for
the edges going into the sink since a flow more than
capacity cannot pass through an edge by the Capac1ty
constraint given in Equation (2).

Based on Proposition 1, there is no need run max-flow
until the total capacity value of S is achieved for the disk
edges; i.e. all the edges going into the sink. Besides, this
proposition can be used to define a lower range for the
binary capacity scaling algorithm.

Proposition 2. Let G = (V, E, s,t, ¢) be a flow network, which is
specifically constructed for the retrieval problem. Then, the fol-
lowing statement holds:

Vv € V,where (v,t) € E : f(v,t) <indeg(v). (5)

Proof. This proposition holds by the flow conservation con-
straint of the max-flow problem provided in Equation (1)
and the specific construction of the flow network for the
retrieval problem such that for every edge (v,t) € E, all
incoming edges to the vertex v has the capacity of 1. O

1547

Based on Proposition 2, it is unnecessary to increment the
capacity of a disk edge (v,t) more than the indegree of v.

Proposition 3. Let G = (V, E, s,t, ¢) be a flow network, which is
specifically constructed for retrieving the request R, Tr,; be the
optimal response time of R, and Ty be the retrieval time of
disk d. Then, the following two statements hold:

Yog € Vi (vayt) € E: Ty < Dg+ Xy + indeg(vq) * Cy, (6)

Topt < Max{TOaTlv"'aTNfl}' (7)

Proof. This proposition holds by the definition of optimal
response time retrieval, which states that optimal
response time retrieval of a request is defined by the disk
yielding the maximum retrieval time. Since a disk
reaches to its maximum retrieval time when it retrieves
all possible buckets it stores from the request, then this
number can be achieved using the indegree of the vertex
vy representing the disk d. 0

Based on Proposition 3, we can easily define an upper-
range for the binary capacity scaling algorithm.

3.1 Ford-Fulkerson Based Solution

The first integrated algorithm we propose for GRP uses the
Ford-Fulkerson method as shown in Algorithm 1. This algo-
rithm is modified from the original algorithm provided for
BRP in [29]. Algorithm 1 assumes that flow values of the
edges going out of the source vertex are all initialized to 1 at
the beginning. Assume A is an edge set holding all the edges
going into the sink. Line 1 of the Algorithm 1 calls Algo-
rithm 2, which initializes the capacities of the edges in A
based on Proposition 1 in order to eliminate unnecessary
flow calculations. Algorithm 2 accomplishes this by incre-
menting the capacities until the total capacity value of the
edges in A reaches to S using the capacity incrementation
algorithm presented in Algorithm 3. In each incrementation
step, Algorithm 3 determines the edges in A yielding the
minimum retrieval cost in lines 6-8 and increments the
capacities of the edges with this minimum cost in lines 12-13.
Note that, if there are more than one edge yielding the same
retrieval cost, then their capacities are incremented at the
same time as in BRP. Lines 4-5 and lines 10-11 do not con-
sider an edge if the disk associated with that edge cannot be
used to retrieve any more buckets based on Proposition 2.

Algorithm 1. Ford-Fulkerson Based Integrated Algorithm
1: TestAndSet MinCapacities()

2: fori < 1to Sdo
3. dfs_success = DFS(G,v[i],t, caps, flow, path)

4: while (ldfs_success) do
5: total_caps «— CapacityIncrement()
6: dfs_success = DFES(G,vli, t, caps, flow, path)
7: forall e € path do
8: if target(e) # t then
9: G.ReverseEdge(e)
10: if IsReverse(e) then
11: flowle]- -
12: else
13: flow[e]++

14: FizReversedEdges()

1548

Algorithm 2. Test AndSet MinCapacities()

1: total_caps — 0

2: for all incoming edges (¢, t) do

3. total_caps += capse]

4: while total_caps < S do

5: total_caps — CapacityIncrement()

After the capacities in A are initialized, for each bucket i of
the request, the algorithm searches for an augmenting path
from the vertex representing the bucket i to the sink vertex in
lines 2-3 of Algorithm 1. If no augmenting path exists, capaci-
ties of the edges in A are incremented by one using Algo-
rithm 3 until a path is found through the lines 4-6. For each
edge in the path, line 9 reverses its direction if the edge is
between a bucket vertex and a disk vertex. This reversal is
necessary to be able to change the retrieval decision of a pre-
viously assigned bucket. Finally, lines 10-13 increments or
decrements the flow of each edge in the path depending on
its direction. If the edge direction is not in its original direc-
tion, then the flow is decremented meaning that the retrieval
choice is changed; otherwise, the flow is incremented. At the
end of the algorithm, we have to fix the directions of the
edges since some of them might have a reverse direction.

Applying Proposition 2 in Algorithm 3 ensures that the
number of incrementation steps are bounded by r * S in the
worst case, where r is the number of replicas or the replication
factor. Since the DFS might try r * .S edges in the worst case,
worst case time complexity of the Algorithm 1is O(r?5?).

Algorithm 3. CapacityIncrement()

1: total_caps — 0

2: min_cost «+— MAXDOUBLE

3: for all incoming edges (e, ¢) do

v« G.source(e)

if G.indeg(v) > capsle] then
costsle] < Dle] + X[e] + (caps[e] + 1) x Cle]
if costsle] < min_cost then

min_cost «— costse]
9: for all incoming edges (e, ¢) do

10: v« G.source(e)

11: if G.indeg(v) > caps[e] then

12: if costsle] == min_cost then

13: capsle]++

14: total_caps += caps|e]

15: return total_caps

3.2 Push-Relabel Based Solution

Although Ford-Fulkerson based algorithms are simple and
easy to implement, most practical maximum flow implemen-
tations are based on the push-relabel algorithm. Therefore,
we also propose a push-relabel based integrated retrieval
algorithm for GRP. Algorithm 4 presents a basic push-rela-
bel based maximum flow algorithm. Lines 1-8 show the ini-
tialization step. Push/relabel operations of the algorithm are
performed in lines 9-10, which we skip details there for the
sake of simplicity; however, readers are directed to [43] for
the implementation of push/relabel operations. When the
algorithm terminates, excess value of the sink holds the max-
imum flow amount that can be pushed from source to sink.

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.5, MAY 2016

Depending on the vertex selection rule, complexity of the
algorithm changes. FIFO ordering yields the complexity of
O(|v3|) [43] while high-level selection rule leads to the com-
plexity of O(|V?|\/|E|) [44], where |V is the number of verti-
ces and |E| is the number of edges in the flow graph. For
different implementation techniques and optimization meth-
ods (global/gap relabelling heuristics) for the push-relabel
algorithm, readers are referred to [45].

Algorithm 4. Push-Relabel Algorithm

: for all out edges(e,s) do

v — target(e)
QUEUE.append(v)

flowle] — caple]

excess[v] += caple]

: for all nodes(v,G) do

height[v] — 0

. height[s] «— G.number_of_nodes()
while QUEUE # () do

10: apply push/relabel operations by updating the QUEUE
11: return excess]t]

PN T RPN

hd

Algorithm 5. PushRelabelIncremental()

1: TestAndSetMinCapacities()
2: while (true) do
INIT()
while QUEUE # () do
apply push/relabel operations by updating the QUEUE
if excess|t] == S then
break
CapacityIncrement()
return ezcess|t]

Algorithm 6. INIT()

: QUEUE.Clear()

: for all nodes(v,G) do
height[v] — 0

: height[s] < G.NumberO fNodes()
: excess[s] — 0

: for all out edges(e,s) do
v «— Target(e)

8 « caple] — flowle]

if d > 0 then

10: QUEUE. Append(v)
11: flowle] «— caple]

12: excess[v] += caple]

WN DU AN

©

Algorithm 5 presents a push-relabel based integrated
maximum flow algorithm for GRP. Similar to Algorithm 1,
Algorithm 5 sets the capacities in line 1 based on Proposi-
tion 1. For every iteration, we need to follow an initialization
step slightly modified from the initialization step of the
original push-relabel algorithm presented in Algorithm 4.
Initialization step for the integrated algorithm is presented
in Algorithm 6. First, we clear the queue as in line 1 and ini-
tialize the height values as in line 2-4. Push-relabel opera-
tions ensure that excess values of the vertices except the
source and the sink vertices are all set to 0 when the algo-
rithm terminates. Therefore, we only set the excess value of

ALTIPARMAK AND TOSUN: MULTITHREADED MAXIMUM FLOW BASED OPTIMAL REPLICA SELECTION ALGORITHM FOR HETEROGENEOUS...

source to 0 as in line 5. Note that our aim is conserving the
flows found in the previous runs, therefore flow values are
not initialized back to 0. In addition, the algorithm should
add vertices to the queue only if they can pass more flow in
the next push/relabel operations. We check this by using
the § value calculated in line 8 and initialize only such verti-
ces in lines 9-12. After initialization, Algorithm 5 applies the
push-relabel operations in lines 4-5 and checks the max-
flow of S. If max-flow of S is not achieved, then capacity
incrementation is performed respecting Proposition 2. This
iteration is repeated until the max-flow of S is reached.

Algorithm 5 solves GRP using an integrated push-
relabel based maximum flow algorithm. Although we can
conserve the flows calculated in the previous run, the algo-
rithm still considers all possible retrieval times starting
from the minimum in an exhaustive search manner leading
to O(c# S) max-flow runs. Since we are conserving the
flows, the algorithm is expected to run faster than its black-
box counterpart; however, we can still improve the worst
case complexity further by using the Binary Capacity Scal-
ing technique presented in [33]. BCS will bring the capacity
values up to an initial value very close to the optimal in
O(logs(S)) operations before the incrementation step is
started by Algorithm 5.

Algorithm 7 presents our final push-relabel based inte-
grated maximum flow algorithm using the Binary Capac-
ity Scaling technique. First, it calls Algorithm 8 in line 1
to define a range (tmin, tmas), Where the optimal response
time is guaranteed to lie within. Such a range can be
defined using the Proposition 1 for ¢, and the Proposi-
tion 3 for ¢,,,4,. In order to find ¢,,;,, based on Proposition 1,
Algorithm 8 sets the capacities using Algorithm 2 in line 1
and finds the response time of this minimum capacity
setting in lines 6-8. In order to find t,,,, based on Proposi-
tion 3, Algorithm 8 calculates the response time in lines
9-12 assuming that all the buckets stored in every disk
are used in the retrieval decision. Finally, since we want
to ensure that there is no solution for t,,,, we find the
min_speed value in line 13-14 representing the smallest Cy
value and subtract this value from ¢,,;, in line 15.

After defining the range, Algorithm 7 calculates the mid-
dle value (¢,,;4) of the range in line 3 and finds the capacities
corresponding to ¢,s in line 4 using the capacity scaling
algorithm presented in Algorithm 9. Initialization and push/
relabel operations are performed in lines 5-7. If there is no
solution such that excess[t] # S, it stores the current flow
state of the graph as in lines 9-10 to be used later to eliminate
unnecessary flow calculations. Also, it increases t,,, to t,q
as in line 11 to eliminate the bottom range. If there is a solu-
tion such that excess[t] = S, since we cannot guarantee the
optimality of the result, previously saved flow values are
restored and ¢,,,, is decreased to t,,;; as in lines 13-15 to elim-
inate the top range. The algorithm stops when the range is
smaller than min_speed, restores the saved flows, calculates
the final capacities corresponding to t,,;,, and calls the Algo-
rithm 5 through the lines 16-19. In the worst case, Algorithm 7
performs O(logs(S)) incrementation steps and calls Algo-
rithm 5 to reach to the optimal response time. Since the
capacity values that Algorithm 5 starts with are very close
the optimal values, optimal response time will be achieved
by the Algorithm 5 in constant incrementation steps.

1549

Algorithm 7. Push-Relabel Based Integrated Algorithm

1: GetRanges(&tmin, &tmar, &min_speed)

2: while ({00 — tmin) = min_speed do

tm,id — t,,,,j" + (trm,,",, - t,,,”;,,,) * 0.5

total_caps — CapacityScale(ty;q)

INIT()

while QUEUE +# () do
apply push/relabel operations by updating the
QUEUE

8: if excess[t] I= S then

9: StoreFlows()

10: tmp_excess_t — excess|t]
11: tmin < tmid

12: else

13: LoadFlows()

14: excess[t] «— tmp_excess_t
15: tmaz < tmid

16: LoadFlows()

17: excess|t] < tmp_excess_t
18: CapacityScale(t)

19: PushRelabelIncremental()

4 MULTITHREADED IMPLEMENTATIONS

Most new generation storage arrays are powered with
multi-core processors. Since retrieval decision is a time criti-
cal issue, it is necessary to use multithreaded implementa-
tions in order to reduce the execution time of retrieval
algorithms further. For instance, a single EMC Symmetrix
Vmax 10K storage array supports eight six-core 2.8 GHz
Intel Xeon Processors [46], where each core can run two
threads concurrently allowing 96 concurrent thread runs.
Parallelization can be applied at two different stages, either
during the maximum flow calculation step or while deter-
mining the correct capacity values.

4.1 Multithreaded Maximum Flow Calculation

Many push-relabel based parallel maximum flow algo-
rithms were proposed in the literature [47], [48], [49]. How-
ever, synchronization is the main performance barrier for
most of these algorithms. A general technique is the usage
of locks to perform push/relabel operations and locks are
known to have expensive overheads [50]. An asynchronous
parallelization method proposed by Hong and He claims to
outperform other parallel algorithms by eliminiating locks
and using atomic hardware instructions instead [49]. The
algorithm presented in [49] implements the same push/
relabel techniques proposed in [43]; however, it does not
require any locks or barriers to protect the push/relabel
operations. Instead, they use atomic read-modify-write
instructions. We implemented a parallel version of our
Algorithm 7 using POSIX threads (pthreads) library and the
techniques described in [49]. Since the parallelization
should take place in the push/relabel operations, line 7 of
the Algorithm 7 is modified to support multithreaded
push/relabel operations as it is described in [49].

4.2 Multithreaded Capacity Setting Algorithm

Another opportunity of parallel processing for GRP is the
Binary Capacity Scaling stage of Algorithm 7. BCS algo-
rithm first defines a range where the optimal response time
is known to be within this range. In each iteration, the

1550

algorithm picks the middle value of the range, calculates the
capacities for this middle value, and runs the maximum
flow algorithm. Depending on the flow value, the algorithm
shrinks the range by half either eliminating the top half por-
tion or the bottom half portion. After the range is small
enough, the algorithm terminates. In order to shrink this
range faster, multiple threads can be used to calculate the
maximum flow of different sub-ranges in parallel. By this
way, we can improve the execution time of the binary
capacity scaling stage, which will directly improve the exe-
cution time of the Algorithm 7.

Algorithm 8. Get Ranges(*tmin, ¥tmaz, *min_speed)

TestAndSet MinCapacities()
*mm speed) — MAXDOUBLE

(
(mm
(mal)
for all i 1ncom1ng edges (e, t) do
edge_cost < Dle] + X[e] 4 caps[e] x Cle]
if edge_cost > (#t,,;,,) then
(*tmin) < edge_cost
9: v=G.source(e)
10: cur-max < Dle] + X[e] + G.indeg(v)
11: if cur-max > () then
12: (*tmaz) — cur_mazx
13: if Cle] < (*min_speed) then
14: (*min_speed) «— Cle]
15: (*tpin) -= min_speed

1:
2:
3:
4:
5:
6
7
8

x Cle]

Algorithm 9. CapacityScale(t,iq)

1: total_caps — 0

2: for all incoming edges (e, ¢) do
capsle] — |(tnia — DIe] — X[e])/Clel]
4: if capsle] < O then

5 capsle] — 0

6: total_caps += caps|e]

7: return total_caps

For a disk request composed of S buckets and interval size
Dy+X4+Cyx8
min_speed
case when all the buckets are stored in a single disk. Using
the BCS, this range can be shrunk in O(log(S)) max-flow
runs. However, with the help of ¢ threads, the same range can
be shrunk in O(log;,1(S)) max-flow runs. Note that max-flow
run is a costly operation, where each run of a push-relabel

based algorithm requires O(|V?|\/|E|) to O(|V?3|) computa-
tion depending on the implementation. Using ¢ threads, we

loga (S loga (S

92(&) = z[fﬁﬁ(— = loga(t +1)
loq;(t+1)

times. Consider the following example for better understand-

ing of the multithreading process.

of min_speed, there is S = intervals in the worst

can decrease the max-flow runs 7

Example 1. Fig. 7 defines the initial range to be shrunk
between Max. Range (t,q,) and Min Range (t,,). Assum-
ing S =8 and ¢ = 7, execution sequence on the right rep-
resents the sequential BC'S and the execution sequence
on the left represents the multithreaded version of this
algorithm. In this case, sequential BC'S requires a total of
log ,S = 3 max-flow runs. As a result of the first sequen-
tial run (Seq. run 1), the upper half range is eliminated,
and after the third sequential run, targeted sub-range is

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.5, MAY 2016

Max. Range
Par. run thread | <---------------mooomoooe
Par. run thread 2 <-----------------o oo
Par. run thread 3 <-------------------ooooe
Par. run thread 4 <-------oooooooooooo s Seq. run 1
Par. run thread 5 =<---------------mmmmomooo oo Seq. run 3

—~Targeted Sub-Range
""""""""""" Seq. run 2

Par. run thread 6 =----
Par. run thread 7 =<------------------omoooo

Min. Range

Fig. 7. Multithreaded binary capacity scaling algorithm.

determined. On the other hand, parallel implementation
shown on the left of Fig. 7 requires a total of S —1=7
max-flow calculations compared to 3 calculation
required by the sequential algorithm. However, since
these 7 calculation can be performed in parallel using
t = 7 threads, targeted sub-range can be determined in 1
parallel max-flow run. In this particular example, we
achieve logy(7 + 1) = 3X speed-up for the capacity scal-
ing process using t = 7 threads.

Parallel version of Algorithm 7 adapting multithreaded
BSC as explained above is provided in Algorithm 10.

Algorithm 10. Parallel Push-Relabel Integrated Algorithm

1: GetRanges(&tpmin, &tmaz, &min_speed)
2: total_caps «— CapacityScale ()

3: while ({00 — tmin) = min_speed do

4: for all sub-range i of [¢,i, ta.] in parallel do
5 total_caps «— CapacityScale(t;)

6: INIT()
7.
8

while QUEUE # () do
apply push/relabel operations by updating the

QUEUE

9: if excess|t] == S then
10: success[i] = 1
11: else
12: success[i] =0
13: for all sub-range i of [t,in, tima] dO
14: if success[i] == 0 && success|i + 1] == 1 then
15: min — successi]
16: bz < successli + 1]

17: total_caps — CapacityScale(t,n)
18: PushRelabellncremental ()

5 EVALUATION

In this section, we evaluate the execution time performance
of the proposed algorithms as well as its effect on the end-
to-end performance of the requests using simulations
driven by synthetic and real world storage workloads on
various homogeneous and heterogeneous multi-disk stor-
age configurations.

5.1 Allocation Scheme

As the first step of the experimental setup, we need to
assume a replicated data allocation (declustering) strategy
to distribute the buckets to the disks. For this distribution,
we used Random Duplicate Allocation (RDA) that stores
a bucket into ¢ disks chosen randomly from the set of
disks in the system [51]. Our motivation behind this
choice is that RDA performs equally well for all query
types while other allocation strategies are generally

ALTIPARMAK AND TOSUN: MULTITHREADED MAXIMUM FLOW BASED OPTIMAL REPLICA SELECTION ALGORITHM FOR HETEROGENEOUS...

Synthetic - Arbitrary-Load1 - N=100

Synthetic - Connected-Load2 - N=100

1551

Synthetic - Range-Load3 - N=100
1600

5400 | Request Size

Mean = 4993.02
Maximum = 5190
.

5200 -

5000 [JEIEN

Request Size

4800 [& o

Request Size (buckets)

Minimum = 4684

4600 -

Mean = 4909.88
Maximum = 9996

<
Minimum = 4

Request Size ©

Mean = 149.75
Maximum =1105

Request Size o

1400
1200
1000
800
600 | *
400
200

Request Size

Minimum = 1

-200

L
200

. . .
400 600 800
Request ID

(a) Arbit-Loadl

L
0 200 1000 0

Fig. 8. Synthetic workloads - request size statistics - N = 100.

optimized for certain query types. For instance, while
orthogonal allocations [18], [52] generally perform better
for arbitrary queries, periodic allocation strategies [17],
[53] are more suitable for range queries.

5.2 Workloads

In order to evaluate the performance of the algorithms, we
also need to use a certain workload information specifying
the request details. This information can be obtained from
storage traces. We evaluated the algorithms using synthetic
and real world multi-disk storage system traces. For data
space, we assumed N x N grid containing total of N2 buckets
init, where N is the number of disks available in the system.

5.2.1 Synthetic Workloads

For synthetic workloads, we used three popular query types
that can happen in a rectangular grid; arbitrary queries, con-
nected queries, and range queries. These query types are
combined with different probabilistic query load distribu-
tions. We use the notation pj, to denote the probability that a
query in load ¢ can be retrieved in & disk accesses optimally.
Once the optimal number of disk accesses k is selected, the
number of buckets is selected uniformly from the range
[(k—1)N+1,kN].

o Arbitrary-Loadl: Arbitrary queries have no geometric
shape. Any subset of the set of all available buckets is
an arbitrary query. We can denote arbitrary queries
as a set and the number of arbitrary queries is

Zf\fl (]\22), which is equal to 2V * (number of subsets
of a set with N? elements). The query/request size of
load1 is determined based on the query size distribu-
tion of all possible arbitrary queries inan N x NN grid.
As a result of this distribution, medium size queries
are more likely to happen since the expected request
size based on this distribution is % + O(%)-

o Connected-Load2: The buckets in a connected query
form a connected graph. Create a node for each
bucket in the query and connect two buckets [¢, j] and
[m,n] by an edge if they are neighbors in the wrap-
around grid. If the resulting graph is connected then
it is a connected query. Query size is determined
based on a uniform distribution since finding query
size distribution of all possible connected queries in
an N x N grid is not an easy task. We achieve this
uniform distribution in load2 by setting p? to exactly

+- Expected request size of load 2 queries is VTZ

e Range-Load3: Range queries are rectangular in
shape in the wraparound grid. A range query is
identified with four parameters (z,j,r,¢) 0 <1, j <
N—1,1<r,c<N. i and j are indices of the top

L
400

(b) Conn-Load2

. . .

400 600 800
Request ID

(c) Range-Load3

. . .
600 800 200
Request ID

1000 0 1000

left corner of the query and r, ¢ denote the number
of rows and columns in the query. The number of
distinct range queries on an N x N grid is
(%ﬂ))2 Our aim in load3 is creating smaller size
queries compared to loadl and load2. We achieve

. . k N .
this by setting p} to m In this case p} = 3p}_;,
2 < k < N. Expected request size of load 3 queries

is 2.

Synthetic workload statistics are provided in Fig. 8 show-
ing the request size and interarrival times of the requests
per trace interval. By the request size, we mean the number
of buckets requested in one request.

5.2.2 Real World Workloads

In addition to the synthetic workloads, we also use five pop-
ular real storage traces previously used in various storage
related studies [54], [55], [56]. These real storage traces
include the query size and load information of real storage
systems and they are publicly distributed via the online
trace repository provided by the Storage Networking Indus-
try Association (SNIA) [34].

e Exchange: Exchange is taken from a server running
Microsoft Exchange 2007 inside Microsoft [57]. It is a
mailing server for 5,000 corporate users and covers a
24-hour weekday period, taken on 12/12/2007, and
broken into 96 intervals of 15 minutes. Exchange
trace statistics are shown in Fig. 9 for each trace inter-
val shown on the x-axis.

e LiveMaps: LiveMaps is a trace of the tile back-end
server for the Virtual Earth feature of Live
Maps [57]. The tile back-end server holds satellite
images and photographs of locations. The trace
covers a 24-hour period starting on 2/21/2008 at
1:30 PM. The trace is broken into 24 one hour inter-
vals. LiveMaps trace statistics are provided in Fig. 10
for each trace interval shown on the x-axis.

e Build: Build is a trace of a Windows build server
(WBS) [57], which does a complete build of the 32-bit
version of the Windows Server Operating System
every 24 hours. The trace covers a 24-hour period
starting on 11/28/2007 at 8:40 PM. The trace is bro-
ken into 96 intervals of 15 minutes each and its statis-
tics are shown in Fig. 11.

e TPC-C: TPC-C is an online transaction processing
(OLTP) benchmark simulating an order-entry envi-
ronment [58]. It is a mix of five concurrent transac-
tions of different complexities. The TPC-C trace
covers 36 minutes of workload taken on 2/26/2008
and broken into 6 intervals of 6 minutes. TPC-C trace
statistics are provided in Fig. 12.

1552

EXCHANGE - Max/Avg Request Size Per Interval EXCHANGE - Request Interarrival Statistios

M&*,

10 ¥

10000

mean ——
stdev - -x

Maximurh Request Size —
Average Request Size +

1000 §

I| el "".|"||"'|"|'| I |I
i I
. AT |
B

Intervals (15 minutes each)

(a) Request Size

Time (milliseconds)

100

1 P
0 10 20 30 40 50 60 70 80 90
Intervals (15 minutes each)

(b) Interarrival Time

Fig. 9. Exchange trace statistics.

LIVEMAPS - Max/Avg Request Size Per Interval LIVEMAPS - Request Interarrival Statistics

100

Maximum Request Size mean ——

‘Average Request Size +

K

(a) Request Size

stdev -+ x:

Time (miliseconds)

0 B 0 15 20 2
Intervals (1 hour each)
(b) Interarrival Time

Fig. 10. LiveMaps trace statistics.

BUILD - Max/Avg Request Size Per Interval

BUILD - Request Interarrival Statistics

16406
Maximum Request Size
Average Request Size + 100000 |

10000

1000 [

Time (milliseconds)

100 fx

Request Size (buckets)

10 [

]l

i i
| I‘“ “I l‘“
110 20 3 40 50 60 70 80 %

Interval (15 minutes each)

(a) Request Size

1 i
0 10 20 30 40 50 60 70 80 90
Intervals (15 minutes each)

(b) Interarrival Time

Fig. 11. Build trace statistics.

e TPC-E: TPC-E is another OLTP benchmark simulat-
ing the workload of a brokerage firm [59]. TPC-E is
the successor of TPC-C, its transactions are more
complex than those of TPC-C, and they more closely
resemble modern OLTP transactions. The TPC-E
trace covers 84 minutes of workload taken on 10/
18/2007 and broken into six intervals of 10-16
minutes. TPC-E trace statistics are shown in Fig. 13.

5.3 Storage Configurations and Parameters

We performed simulations using five different disk models;
three hard-disk drives (HDD) with different revolutions per
minute (RPM) and two solid-state disks (S5D), one high-end
and one low-end. Specifications of the disks are provided in
Table 3. All values except the Average Access Time are
obtained from the factory specifications. Average Access Time
is the average time spent to reach a data bucket (positioning
time) in a disk and we calculated it experimentally running a
read only benchmark on the real disk. Since the Average
Access Time value should roughly be the sum of average seek
time (Seek Time) and rotational latency (Latency), factory
specifications of the disks seem matching our results.

In order to calculate the retrieval schedule, we need to
know the average time it takes to retrieve a bucket from a
disk. Therefore, we should consider both the Average Access
Time and the Transfer Time of a bucket. In our simulations, we
used the bucket size of 4 KB since it is the default block size

TABLE 3
Disks

[Producer| Model [Type [RPM [Seek T.]Latency [Bandwidth [Avg. Access T.

Seagate |Barracuda|HDD|7.2 K| 8.5 ms | 4.1 ms | 57 MB/s 13.2 ms
WD Raptor |HDD| 10 K| 42 ms | 5.5 ms | 68 MB/s 8.3 ms
Seagate | Cheetah |HDD|15 K| 3.6 ms | 2.0 ms | 86 MB/s 6.1 ms
OCZ Vertex | SSD - - 0.1 ms | 197 MB/s 0.5 ms
Intel X25-E | SSD - - 0.07 ms | 250 MB/s 0.2 ms

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.5, MAY 2016

TPC-C - Max/Avg Request Size Per Interval TPC-C - Request Interarrival Statistics

w0 [T " Maximum Fequest Size
Average Request Size +

Request Size (buckets)

20 1 mean ——
stdev, - x
0 0.001
1 2 3 4 5 6 1 2 3 4 5 6
Intervals (6 minutes each) Intervals (6 minutes each)

(a) Request Size (b) Interarrival Time

Fig. 12. TPC-C trace statistics.

TPG-E - Max/Avg Request Size Per Interval
200 1000
180 [Maximum Request Size

Average Requesi Size +
160 | B 100
140

TPG-E - Request Interarrival Statistics

mean ——
Stdey — x--

100 F
80

60 [4
40t 4
20 4
0

1 2 3 4 5 6
Intervals (10-16 minutes each)

(a) Request Size

Request Size (buckes)
Time (miliseconds)

Intervals (10-16 minutes each)

(b) Interarrival Time

Fig. 13. TPC-E trace statistics.

for many general purpose filesystems. Using 4 KB of bucket
size, transfer time of a bucket can be calculated using its Band-
width, which is 68 microseconds for a Barracuda HDD and
15 microseconds for a X25-E SSD. Since the Average Access
Time value is the dominating factor in retrieval of a single
bucket, it is a good approximation to be used by retrieval
algorithms. For larger bucket sizes, retrieval algorithms
should also consider the transfer time. Please note that trans-
fer time is still considered while evaluating the end-to-end
performance using DiskSim in Section 5.6.4, it is only omitted
by retrieval algorithms while finding the retrieval schedule
based on the bucket size we used in our experiments.

Using the disks provided in Table 3, we created four dif-
ferent homogeneous and heterogeneous multi-disk storage
architectures. Table 4 provides these configurations.
disk_confl and disk_conf2 represent homogeneous storage
architectures, the former using the slowest disk (Barracuda
HDD 7.2 K RPM) of Table 3 and the latter using the fastest
disk (Intel X25-E SSD) of Table 3. disk_conf3 and disk_conf4
represent heterogeneous storage architectures. In disk_conf3,
disks are chosen with equal probabilities. In disk_conf4, extra
10 percent of the data is randomly placed in a fast SSD so
that it can act as a cache in front of the HDDs. Note that no
cache replacement policy is applied in disk_conf4 in order to
evaluate the proposed algorithms fairly. Instead, we used a
static caching strategy where the cached buckets remain
constant during the experiment period.

5.4 Number of Disks and Replicas

For synthetic workloads and all real workloads except
TPC-C and TPC-E, we use N = 100 disks, for the TPC-C
and TPC-E workloads, we use N = 1,000 disks. TPC work-
loads are replayed with more number of disks since they
put more pressure on the storage sub-system due to their
low request interarrival times. As it can be seen from
Figs. 12 and 13, TPC workloads have an interarrival time of

TABLE 4
Storage Configurations

[Storage Config. [Barracuda [Raptor [Cheetah | Vertex [X25-E |

disk_confl 100% - -

disk_conf2 - - - - 100%
disk_conf3 20% 20% 20% 20% | 20%
disk_conf4 33.3% 33.3% | 33.3% - 10%

ALTIPARMAK AND TOSUN: MULTITHREADED MAXIMUM FLOW BASED OPTIMAL REPLICA SELECTION ALGORITHM FOR HETEROGENEOUS...

0.1 to 0.01 milliseconds, issuing tens of millions of requests
in every interval. This variation in the number of disks also
allows us to observe the effect of number of disks on the
execution time of the algorithms. Besides the number of
disks, we also performed experiments using various replica-
tion factors; for r = 2, 3,4,5. However, we share the results
for r = 3 since we did not observe a major change in the exe-
cution time performance of the algorithms and r = 3 is the
most commonly used replication factor in real systems
(HDFS, GoogleFS etc).

5.5 Algorithms

We implemented the algorithms listed below for evaluation.
Time complexities are given in terms of the number of verti-
ces |V| and the number of edges |E| of the flow graph and
assuming the usage of the BCS algorithm when applicable.
Note that the flow graph of the retrieval problem has
|[V| =S+ N + 2 vertices and |E| = S * (r + 1) + N edges.

e leda-pr-bb is a push-relabel based black-box retrieval
algorithm proposed in [33] implemented using the
LEDA [60] library version 3.4.1 and its maximum
flow implementation based on Goldberg and
Tarjan’s push-relabel technique [43]. This implemen-
tation of maxflow has the complexity of O(|V?|). This
is possible since it uses the FIFO ordering for select-
ing vertices and exact height calculation heuristics
suggested by [45]. leda-pr-bb has the time complexity
of O(|V['log S).

o leda-pr-int is the integrated version of leda-pr-bb sup-
porting the flow conservation property based on
Algorithm 7 presented in this paper. Similar to leda-
pr-bb, leda-pr-int also has the time complexity of

O(|V[’log S); however, due to flow conservation
property, leda-pr-int is expected to perform better in
practice.

e leda-ff-int is a Ford-Fulkerson based integrated
retrieval algorithm implemented based on Algo-
rithm 1 presented in this paper using the LEDA [60]
library version 3.4.1. leda-ff-int has the time complex-
ity of O(r?$?).

e hi-pr-int is another push-relabel based integrated
retrieval algorithm implementing Algorithm 7 pre-
sented in this paper. However, max-flow calculation
of hi-pr-int is based on Goldberg’s hi-pr implementa-
tion. hi-pr is currently the fastest sequential imple-
mentation available that we are aware of. It has the
time complexity of O(|V?|\/|E|) [44]. It achieves a
good performance by using the highest level vertex
selection strategy combined with global and gap
relabelling heuristics [45]. hi-pr-int has the time com-
plexity of O(V2y/Elog S).

e amf-int is a multithreaded push-relabel based inte-
grated algorithm where the parallelization is applied
at the max-flow calculation step using the paralleli-
zation technique of [49] as described in Section 4.1.
amf-int has the time complexity of O(|V’|Ellog S).

e mbcs-int is another multithreaded push-relabel
based integrated algorithm based on Goldberg’s hi-pr
implementation where the parallelization is applied
at the binary capacity scaling algorithm as described

1553

in Section 4.2, Algorithm 10. Similar to hi-pr-int, mbcs-
int also has the time complexity of O(V?v/Elog S).
We implemented the algorithms described above in
C programming language and compiled using gcc
version 4.4.3 optimization level 3 (-O3) except the ones
requiring the C++ LEDA library (leda-pr-bb, and leda-ff-int),
which are compiled using g++ version 4.4.3 optimization
level 3 (-O3). The machine we used for evaluation has a 10
core Intel Xeon E5-2680 processor supporting 20 threads
simultaneously due to hyper-threading and each core is run-
ning at 2.8 GHz clock rate. The system has 32 GB of memory
and it runs Ubuntu 14.04.2 LTS operating system. For multi-
threading, we used the POSIX threads (pthreads) library.

5.6 Results

In this section, we provide some of the experimental results
that are interesting for our purposes. Our aim is comparing
the execution time performance of the algorithms described
in Section 5.5, and investigate its effect on the response time
of the disk requests. As a result of the experiments, we
observed that disk_confl performs similar to disk_conf2 and
disk_conf3 performs similar to disk_conf4 in terms of the exe-
cution time performance. Therefore, we use disk_confl to
represent homogeneous storage architectures and disk_conf3
to represent heterogeneous storage architectures in the rest
of the paper. In addition to this, we found out that push-
relabel based retrieval algorithms are superior to the Ford-
Fulkerson based retrieval algorithm (leda-ff-int) as expected
by their time complexities. Therefore, we do not share these
comparisons to save space for more interesting results.

5.6.1 Incremental versus Binary

In this section, we investigate the effect of using Binary
Capacity Scaling in homogeneous and heterogeneous stor-
age architectures. Fig. 14 presents this comparison using the
hi-pr-int algorithm. Incremental implements Algorithm 5 and
Binary implements Algorithm 7. In each figure, x-axis shows
the workload and y-axis shows the average execution time
per request for both incremental and binary algorithms. As it
is clear from Fig. 14b that BCS is extremely beneficial if the
storage architecture is heterogeneous. Especially for large
requests of Arbitrary-Loadl and Connected-Load2 work-
loads, BSC saves up to 0.3 seconds per request. On the other
hand, incremental algorithm performs clearly better than
BCS for homogeneous storage architectures as plotted in
Fig. 14a. The reason for this lies in the number of incrementa-
tion steps performed. Remember that each incrementation
step is followed by a max-flow calculation to check if the opti-
mal retrieval schedule for all buckets is achieved or not.
When the disks are homogeneous, capacities of all disk edges
can be incremented at once yielding a total of N capacity
incrementation in one step, where N is the number of disks in
the system. This is possible in the homogeneous case because
the cost of retrieval is the same for every disk in the system.
Therefore, after one or two max-flow calculations, the opti-
mal solution is generally achieved in the homogeneous case.
When the disks are heterogeneous, each disk might have a
unique retrieval cost causing a single incrementation (the
one yielding the minimum retrieval cost) in each incrementa-
tion step. Therefore, the number of max-flow runs is much
higher compared to the homogeneous case.

B Incremental vs Binary - Homogeneous Disks 2 Incremental vs Binary - Heterogeneous Disks
= 10 ——— = 1000 — —————
g Incremental c——=1 | & Incrémental C——1
El inary memmm | 2 100 i
) 1 o
< €
w0l
E o4 g
£ £
< < 1E
S S
g oo 3 ol !
8 8
& &
" 0001 o e S o e a0 > 5 G 6 %
2 %, O, %, Yoy Yo, U, R0 R £ ", Cu/)/) B, oy Yo, U NG
% &, B, Y %, [SERRN Y G By Y B, [SERR
B P, o, o B By Yy Ko, Bo e
0, 0 %, 0 % %y,
oy Yoy %, o,
@ *

(a) Homogeneous Disks (b) Heterogeneous Disks

Fig. 14. Incremental versus Binary.

As a result of these findings, we suggest the use of a
hybrid algorithm based on the heterogeneity of the storage
system. If the storage devices are homogeneous, just a
capacity incrementation algorithm without BCS should be
used as in Algorithm 5; however, if the storage devices are
heterogeneous, then BSC should also be integrated into the
retrieval algorithm as in Algorithm 7. We apply this hybrid
approach in the rest of the experimentation.

5.6.2 Blackbox versus Integrated

In this section, we compare the execution time performance
of the black-box push-relabel algorithm (leda-pr-bb) pro-
posed in [33] with our sequential integrated push-relabel
implementations (leda-pr-int and hi-pr-int) presented in this
paper as Algorithm 7. Fig. 15 presents this comparison for
homogeneous (Fig. 15a) and heterogeneous (Fig. 15b) disks,
where x-axis shows the workload and y-axis shows the
average execution time per request for both black-box and
integrated algorithms. In both homogeneous and heteroge-
neous cases, the integrated algorithms clearly outperform
the black-box algorithm. Among the integrated implemen-
tations, hi-pr-int clearly outperforms leda-pr-int for every
workload. As a result, integrated hi-pr-int algorithm
achieves an average of 5X speed-up over the black-box leda-
pr-bb algorithm for homogeneous disks, and an average of
5.5X speed-up for heterogeneous disks, considering all
workloads we used. The main reason behind this perfor-
mance gain lies in the flow conservation property of the
integrated algorithm. Since the black-box algorithm does
not have the flow conservation property, it starts with zero
flows in each max-flow run and recalculates the previously
calculated flows instead of conserving them.

5.6.3 Sequential versus Parallel

In this section, we compare the execution time performance
of the multithreaded implementations (amf-int and mbcs-int)
with the best sequential retrieval algorithm we have
achieved so far (hi-pr-int) in Figs. 16 and 17 for homoge-
neous and heterogeneous disks respectively. Since purely
incremental algorithms are performing clearly better than
BCS based algorithms in homogeneous disks, we only com-
pare the performance of hi-pr-int and amf-int in Fig. 16. In

Black-box vs Integrated - Homogeneous Disks @ Black-box vs Integrated - Heterogeneous Disks

Black-box ——1
Integrated-leda M
Integrated-hi mmmm

" Black-box-leda ==
Integrated-leda .
Integrated-hi s

Avg. Execution Time/Request (ms)
Avg. Execution Time/Request (ms)

Q,

o
$1 ,

(a) Homogeneous Disks

(b) Heterogeneous Disks

Fig. 15. Black-box versus Integrated.

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.5, MAY 2016

)

Sequential vs Parallel - Homogeneous Disks amf-int Multithreading Performance - Homogeneous Disks

T 2threads ==

T
Sequential ———
Parallel (amf-int-2T) m—m

Avg. Execution Time/Request (ms)

Avg. Execution Time/Request (ms)
°
2 o
| —

(a) Sequnetial vs Parallel Perf. (b) amf Multithreading Performance

Fig. 16. Sequential versus parallel - homogeneous disks.

Figs. 16b and 17b, we show the performance of the parallel
algorithms for different number of threads, then select the
optimum number of threads for each algorithm and use this
number in Figs. 16a and 17a to compare their performance
with the sequential algorithm.

One immediate observation we make out of these results
is that amf-int consistently performs the worst as shown in
Figs. 16a and 17a. This is actually not very surprising because
amf-int applies parallelization in the maximum flow calcula-
tion stage and parallel maximum flow calculations can gener-
ally provide performance improvements for very large graph
sizes; especially graphs having millions of edges due to better
load balancing among the threads [49]. This issue can also be
observed in Fig. 16b showing the performance of amf-int for
different number of threads, where amf-int’s performance
generally decreases as the number of threads increase, espe-
cially for small graph sizes of Range-Load3, Exchange, Live-
Maps, Build, TPC-E and TPC-C workloads. Table 5 shows
the average graph sizes of the workloads in our experiments
based on their average request size S, number of disks N,
and the number of replicas r used in the evaluation.

In all the experiments we performed for homogeneous
disks using different workloads and replication factors, we
found out that the sequential algorithm hi-pr-int performs
the best without exception. On the other hand, the parallel
algorithm mbcs-int shown in Algorithm 10 consistently out-
performs the other parallel and sequential implementations
for heterogeneous disks. Also, the performance of mbcs-int
increases as the number of threads increases as shown in
Fig. 17b. This proves that parallelizing the BC'S approach as
in mbcs-int scales better with the processing resources of the
system compared to parallelizing the maximum flow calcu-
lation as in amf-int. Considering all the workloads we used,
the proposed multithreaded and integrated mbcs-int algo-
rithm achieves an average of 4.5X speed-up with 16 threads
over the best sequential integrated implementation (hi-pr-
int), and an average of 21X speed-up over the existing
sequential black-box algorithm proposed in [33] for hetero-
geneous architectures.

5.6.4 End-to-End Storage Performance
In this section, we investigate the effect of improving exe-
cution time on the end-to-end performance of the disk

TABLE 5
Average Graph Sizes of Workloads

[Workload [S [N [r[[V[=S+N+2[[E[=S*(r+1)+N]|
Arbitrary-Loadl [4993| 100 |3 5095 20072
Connedted-Load2 | 4909 | 100 |3 5011 19736
Range-Load3 149 | 100 |3 251 696
Exchange 35 | 100 |3 137 240
LiveMaps 101 | 100 |3 203 504
Build 44 1100 |3 146 276
TPC-C 16 [1000]3 1018 1064
TPC-E 16 10003 1018 1064

ALTIPARMAK AND TOSUN: MULTITHREADED MAXIMUM FLOW BASED OPTIMAL REPLICA SELECTION ALGORITHM FOR HETEROGENEOUS...

mbos-int - Disks
10

Sequential vs Parallel - Heterogeneous Disks
= 1000

100 I I
10

— T T
2threads ——=

4 threads m—

8 threads

16 threads E== 3

" Sequential ==
arallel (amf-int-2T) mmm—]
Parallel (mbcs-int-16T) m—

0.1

. 0.01

Avg. Execution Time/Request (ms)
T T
PR 1
§
>]
£
§]
T S o s
&
&
2
R g
>
o
L
Avg. Execution Time/Request (ms)
°
g e

(a) Sequnetial vs Parallel Perf. (b) mbes Multithreading Performance

Fig. 17. Sequential versus parallel - heterogeneous disks.

requests, represented by the response time metric. Response
time indicates the time elapsed between the arrival of a
disk request to the storage system and the completion of
that request, including its Service Time by the storage devi-
ces, the Waiting Time spent in underlying storage queues,
and the Execution Time of the retrieval algorithm. For end-
to-end performance evaluation, we use the DiskSim simu-
lator [61], which is an efficient, accurate, and highly-con-
figurable disk system simulator developed by the Parallel
Data Lab at the Carnegie Mellon University to support
research into various aspects of storage subsystem archi-
tecture. It has been used in a variety of published studies
to understand modern storage performance. We modified
the source code of DiskSim so that we can include the exe-
cution time delay caused by the retrieval algorithms. For
this purpose, we created a custom controller design
assumed to calculate the retrieval schedule, which applies
the execution time delay of the retrieval algorithm on the
requests before they are dispatched to the individual disks
queues. For this approach to work, we disabled the queu-
ing applied at the device driver as DiskSim performs by
default; instead, controllers of individual disks are enabled
to perform queuing and disk scheduling.

Figs. 18 and 19 provide the average response time values
of the requests performed by the real world workloads aver-
aged over all intervals and for individual intervals of each
workload, respectively. We compare the performance of the
existing retrieval algorithm (leda-pr-bb) published in [33]
with the multithreaded and integrated retrieval algorithm
proposed in this paper (mbcs-int) for heterogeneous disks.
In order to emulate a similar queuing effect, we followed
the original disk topologies used while running these appli-
cations, and performed the requests on the corresponding
bytes of the storage devices as listed in the trace files using
the original request size and arrival time information.

As it is clear from the figures, improving the execution
time directly affects the response time of the requests.
Although the request sizes of the real world workloads
shown here are relatively small compared to the synthetic
workloads used in this paper, they still provide up to
2 milliseconds performance improvement per request,
which translates to 20 percent improvement in the end-

EXCHANGE - End-to-end Performance

LIVEMAPS - End-to-end Performance

BUILD - End-to-end Performance

1555

End-to-end Performance

T T T T T

| existing ——
proposed —
-

Response Time (ms)
C LMW AE OO N ® O

Fig. 18. End-to-end performance - averaged over all intervals.

to-end performance. Besides, individual interval perfor-
mance shown in Fig. 19 indicates that even low interar-
rival times of the TPC-C and TPC-E traces shown in
Figs. 12b and 13b respectively translates into a decent per-
formance improvement, proving the indirect effect of exe-
cution time caused by previous requests on the response
time of the current request.

Figs. 18 and 19 prove that the execution time improve-
ment directly or indirectly translates into the end-to-end per-
formance improvement of the storage sub-system.
Therefore, workloads having larger request sizes as in the
synthetic workloads used in this paper are expected to pro-
vide a better end-to-end performance improvement since we
achieved around 60 milliseconds execution time saving per
request for requests having the average request size of
~5,000 buckets. Similarly, a better end-to-end performance
improvement will be be achieved for larger storage systems.
Modern multi-disk distributed storage architectures are gen-
erally composed of thousands of disk drives and deal with
files measured in gigabytes and even terabytes. Even in a sin-
gle storage array, number of disks can reach up to tens of
thousands now. One example is EMC VMAX 40K, which
supports 6,400 disks in total; 3,200 HDDs and 3,200 SSDs [46].

6 DISCUSSION

One interesting issue to be discussed is that parallelization
of the max-flow calculation using the amf technique is not
very suitable for the special graph structure of the retrieval
problem. Performance improvement of amf over hi-pr is
achieved in [49] for either complete graphs having 2,000 to
4,000 vertices (~2 to ~8 million edges), or for dense graphs
having hundreds of thousands of vertices. Authors of amf
claim this issue being due to the limited number of vertices
that overflow at the same time, which they found to be
orders of magnitudes higher in their dense graphs than
their sparse graphs. This number directly translates to the
number of available push and lift operations that can keep
the threads busy. Therefore, amf algorithm can utilize the
threads more efficiently for dense and large graphs. Since
the graph structure of the retrieval problem is sparse as hav-
ing |[V|=S+N+2 vertices and |E|=S*(r+1)+ N

TPC-C - End-to-end Performance TPC-E - End-to-end Performance

oxisting
proposed +

existing ——

oxsting
proposed + 0 proposed _+

Response Time (ms)
Response Time (ms)

5 10 15 20 25

Intervals (15 minutes each) Intervals (1 hour each)

(a) Exchange (b) LiveMaps

Fig. 19. End-to-end performance - individual intervals.

0
0 10 20 30 4 50 60 70 8 90 100 B 2 3 4 5 8 7 0 1 2 8 4 5 6 7
Intervals (15 minutes each)

(c) Build

i
Response Time (ms)
Response Time (ms)

|
\

o
o m s o

Intervals (6 minutes each) Intervals (10-16 minutes each)

(d) TPC-C (e) TPC-E

1556

edges, and the values of N, S, r are limited (see Table 5 for
the average graph sizes of the workloads in our experi-
ments), we conclude that the parallelization technique used
in mbcs-int is more suitable for the retrieval problem.

Second, it should be also noted that proposed multi-
threaded mbcs-int algorithm achieves logy(t+1) times
speed-up using t¢ threads for the capacity scaling process
compared to its sequential counterpart. However, this
speed-up is achieved by performing more computation
than the sequential algorithm. In order to achieve log, (¢t + 1)
times speed-up, mbcs-int algorithm performs S — logs(.S)
times more max-flow computations in total. However, due
to parallel execution of these extra max-flow computations,
mbcs-int still achieves a better execution time assuming the
underlying hardware structure supports simultaneous exe-
cution of ¢ threads.

Next, it is possible to implement the multithreaded ver-
sion of the incremental algorithm (Algorithm 5) using a sim-
ilar parallelization technique applied at the BCS stage of
mbcs-int such that different threads can calculate the flow
values of the same graph simultaneously for different
capacities. However, as a result of our experimental evalua-
tion, we observed that the incremental algorithm does not
provide much potential for parallelization since the max-
flow calculation is performed very limited amount of time.
We found out that max-flow calculation is generally per-
formed only once, and rarely twice in the incremental
stage of the retrieval algorithm. For all the experiments we
performed, we have never observed a case where the incre-
mental algorithm performs more than two max-flow calcu-
lations. This was actually our intention in designing the
algorithms and the reasons behind this is the application of
Propositions 1 and 2 in the homogeneous case, and the final
reduced range produced by the BCS algorithm being less
than the min_speed value for the heterogeneous case.

Finally, this paper draws on the full replication of the
dataset where every bucket is replicated based on a prede-
fined replication factor. However, for many applications
dealing with large datasets, full replication might not be fea-
sible and partial replication can be used instead where only
a subset of the whole dataset is replicated. In addition to
this, the number of replicas for each bucket does not have to
be uniform as well. Nevertheless, the proposed parallel and
sequential retrieval algorithms in this paper support all
aforementioned replication scenarios and the formulation
of the retrieval problem remains the same. One optimiza-
tion in partial replication can be not including the buckets
having a single replica to the flow graphs (shown in Figs. 5
and 6) since the retrieval decision is obvious for these buck-
ets. Otherwise, having a single edge or multiple edges
between a bucket vertex and a disk vertex does not affect
the correctness or the optimality of the solution.

7 CONCLUSION

In this paper, we proposed multithreaded and integrated
maximum flow based replica selection algorithms for distrib-
uted and heterogeneous parallel disk architectures guaran-
teeing the optimal response time retrieval. In our algorithms,
we used various maximum flow calculation and paralleliza-
tion techniques. As a result of our experimentation, we

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.5, MAY 2016

discovered the followings: (a) purely incremental algorithms
are performing better in homogeneous cases; however,
applying the binary capacity scaling mechanism improves
the performance considerably in heterogeneous settings, (b)
push-relabel based algorithms are superior to Ford-Fulker-
son based algorithms in retrieval schedule calculation, (c)
parallelizing the max-flow calculation does not provide a
performance benefit for the retrieval problem due to its
sparse and relatively small graph structures; instead, paralle-
lization in binary capacity scaling stage is a better approach
and scales well with the number of available processors, (d)
proposed integrated sequential hi-pr-int algorithm performs
the best in homogeneous case achieving 5X speed-up on
average, and proposed integrated multithreaded mbcs-int
algorithm performs the best in heterogeneous case achieving
21X speed-up on average over the existing black-box sequen-
tial algorithm using 16 threads.

REFERENCES

[1] V. Filks and S. Zaffos. (2011). MarketScope for Monolithic Frame-
Based Disk Arrays [Online]. Available: http://www.gartner.com/
id=1591014, Gartner Research.

[2] A. Kros, M. Suzuki, S. Low, R. W. Cox, A. Kim, J. Chang, A.
Munglani, S. KB, and S. Deshpande. (2013, Jun.). Quart. Statist.:
Disk Array Storage, All Countries [Online]. Available: http://www.
gartner.com/id=2504815, Gartner Res..

[3] EMC VMAX Storage System. (2011) [Online]. Available: http://
www.emc.com/ collateral/ hardware/specification-sheet/h6176-
symmet rix-vimax-storage-system.pdf

[4] EMC DMX-4 Storage System. (2010) [Online]. Available: http://
www.emc.com/ collateral /hardware/specification-sheet/c1166-
dmx4-s s.pdf

[5]1 Hitachi Virtual Storage Platform. (2012) [Online]. Available:
http:/ /www.hds.com/products/storage-systems/hitachi-virtual-
storage-platform.html

[6] HP P10000 3PAR Storage Systems. (2011) [Online]. Available:
http:/ /h20195.www2.hp.com/v2/GetPDF.aspx/4AA3-
2351ENW.pdf

[7] Nimbus Data S-class Enterprise Flash Storage Systems. (2010)
[Online]. Available: http://www.nimbusdata.com/products/
Nimbus_S-class_Datasheet.pdf

[8] RamSan-630 Flash Solid State Disk. (2010, Aug.) [Online]. Available:
http:/ /www.ramsan.com/files/download /212, Texas Memory
Systems White Paper

[91 Violin 6000 Flash Memory Array. (2011) [Online]. Available:

http://www.violin-memory.com/wp-content/uploads/ Violin-

Datasheet-6000.p df?d=1

EqualLogic PS6100XS Hybrid Storage Array. (2011) [Online].

Available: http://www.equallogic.com/products/default.aspx?

id=10653, Dell, Inc.

Zebi Hybrid Storage Array. (2012) [Online]. Available: http:/ /tegile.

biz/wp-content/uploads/2012/01/Zebi-White-Paper-012612-

Final.pdf, Tegile Systems, Inc.

Adaptec High-Performance Hybrid Arrays [Online]. Available:

http://www.adaptec.com/nr/rdonlyres/alc72763-e3b9-45f7-

b871-a490c29a9b11/0/hpha5_fb.pdf, 2010.

Fusion HPC Cluster. (2009) [Online]. Available: http://www lcrc.

anl.gov/jazz/Presentations/Fusion-Briefing-091029z.pdf

C. Chen, R. Bhatia, and R. Sinha, “Declustering using golden ratio

sequences,” in Proc. 16th Int Conf. Data Eng., San Diego, CA, USA,

Feb. 2000, pp. 271-280

J. Lee, M. Winslett, X. Ma, and S. Yu, “Declustering large multidi-

mensional data sets for range queries over heterogeneous disks,” in

Proc. 15th Int. Conf. Sci. Statistical Database Manag., 2003, pp. 212-224.

A. S. Tosun,“Threshold-based declustering,” Inf. Sci., vol. 177,

no. 5, pp. 1309-1331, 2007

N. Altiparmak and A. S. Tosun, “Equivalent disk allocations,” IEEE

Trans. Parallel Distrib. Syst., vol. 23, no. 3, pp. 538-546, Mar. 2012.

H. Ferhatosmanoglu, A. S. Tosun, and A. Ramachandran,

“Replicated declustering of spatial data,” in Proc. 23rd ACM SIG-

MOD-SIGACT-SIGART Symp. Principles Database Syst., 2004,

pp- 125-135

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

ALTIPARMAK AND TOSUN: MULTITHREADED MAXIMUM FLOW BASED OPTIMAL REPLICA SELECTION ALGORITHM FOR HETEROGENEOUS...

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

(371
[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

C.-M. Chen and C. Cheng, “Replication and retrieval strategies of
multidimensional data on parallel disks,” in Proc. 12th Int. Conf.
Inf. Knowl. Manag., 2003, pp. 32-39.

K. Frikken, “Optimal distributed declustering using replication,”
in Proc. 10th Int. Conf. Database Theory, 2005, pp. 144-157.

K. Frikken, M. Atallah, S. Prabhakar, and R. Safavi-Naini,
“Optimal parallel i/o0 for range queries through replication,” in
Proc. 13th Int. Conf. Database Expert Syst. Appl., 2002, pp. 669-678.
K. Y. Oktay, A. Turk, and C. Aykanat, “Selective replicated
declustering for arbitrary queries,” in Proc. 15th Int. Euro-Par Conf.
Parallel Process., 2009, pp. 375-386.

A. Turk, K. Y. Oktay, and C. Aykanat, “Query-log aware repli-
cated declustering,” IEEE Trans. Parallel Distrib. Syst., vol. 24,
no. 5, pp. 987-995, May 2013.

Y. Yin, J. Li, J. He, X.-H. Sun, and R. Thakur, “Pattern-direct and
layout-aware replication scheme for parallel i/0 systems,” in Proc.
IEEE 27th Int. Symp. Parallel Distrib. Process., 2013, pp. 345-356.
S.W.Son, S. Lang, R. Latham, R. B. Ross, and R. Thakur, “Reliable
MPI-IO through layout-aware replication,” presented at the IEEE
7th Int. Workshop Storage Network Architecture and Parallel
1/0, Denver, CO, USA, 2011.

J. Jenkins, X. Zou, H. Tang, D. Kimpe, R. Ross, and N. F. Samatova,
“Radar: Runtime asymmetric data-access driven scientific data
replication,” in Proc. 29th Int. Conf. Supercomput. - Vol. 8488, 2014,
pp- 296-313.

J. Jenkins, X. Zou, H. Tang, D. Kimpe, R. B. Ross, and N. F.
Samatova, “Parallel data layout optimization of scientific data
through access-driven replication,” Argonne Nat. Lab., Lemont,
IL, USA, Tech. Rep. ANL/MCS-P5072-0214, 2014.

A. S. Tosun, “Analysis and comparison of replicated declustering
schemes,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 11,
pp. 1578-1591, Nov. 2007.

L. T. Chen and D. Rotem, “Optimal response time retrieval of rep-
licated data,” in Proc. 13th ACM SIGACT-SIGMOD-SIGART Symp.
Principles Database Syst., 1994, pp. 36—44.

J. Korst, “Random duplicated assignment: An alternative to strip-
ing in video servers,” in Proc. 5th ACM Int. Conf. Multimedia, 1997,
pp- 219-226.

P. Sanders, “Asynchronous scheduling of redundant disk arrays,”
IEEE Trans. Comput., vol. 52, no. 9, pp. 1170-1184, Sep. 2003.

A.S. Tosun, “Multi-site retrieval of declustered data,” in Proc. 28th
Int. Conf. Distrib. Comput. Syst., 2008, pp. 486—493.

N. Altiparmak and A. S. Tosun, “Generalized optimal response
time retrieval of replicated data from storage arrays,” ACM Trans.
Storage, vol. 9, no. 2, pp. 5:1-5:36, Jul. 2013.

Storage Networking Industry Association [Online]. Available: http:/ /
iotta.snia.org

N. Altiparmak and A. S. Tosun, “Integrated maximum flow algo-
rithm for optimal response time retrieval of replicated data,” in
Proc. 41st Int. Conf. Parallel Process., 2012, pp. 11-20.

K. A. S. Abdel-Ghaffar and A. El Abbadi, “Optimal allocation of
two-dimensional data,” in Proc. 6th Int. Conf. Database Theory,
Delphi, Greece, 1997, pp. 409-418.

L. R. Ford and D. R. Fulkerson, “Maximal flow through a
network,” Can. J. Math., vol. 8, pp. 399-404, 1956.

L. R. Ford and D. R. Fulkerson, Flows in Networks. Princeton, NJ,
USA: Princeton Univ. Press, 1962.

E. A. Dinic, “Algorithm for solution of a problem of maximum
flow in networks with power estimation,” Sov. Math. Dok, vol. 11,
pp. 1277-1280, 1970.

A. V. Karzanov, “Determining the maximal flow in a network b
the method of preows,” Sov. Math. Dok, vol. 15, pp. 434-437, 1974.
G. B. Dantzig, “Application of the simplex method to a transporta-
tion problem,” in Activity Analysis of Production and Allocation.
New York, NY, USA: Wiley, 1951.

P. Jensen and J. Barnes, Network Flow Programming, series Board of
advisors, engineering. New York, NY, USA: Wiley, 1980.

A. V. Goldberg and R. E. Tarjan, “A new approach to the maxi-
mum flow problem,” J. ACM, vol. 35, pp. 921-940, 1988.

J. Cheriyanand S. N. Maheshwari,”Analysis of preflow push algo-
rithms for maximum network flow,” SIAM]. Comput., vol. 18,
no. 6, pp. 1057-1086, 1989.

B. V. Cherkassky and A. V. Goldberg, “On implementing the
push-relabel method for the maximum flow problem,” vol. 19,
no. 4, pp. 390410, Dec. 1997.

Emc Symmetrix VMAX 40K. (2015) [Online]. Available: http://
www.emc.com/storage/vmax10k-20k-40k /index.htm

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

&

1557

R.J. Anderson and J. a. C. Setubal, “On the parallel implementa-
tion of Goldberg’'s maximum flow algorithm,” in Proc. ACM 4th
Annu. ACM Symp. Parallel Algorithms Archit., 1992, pp. 168-177.

D. A. Bader and V. Sachdeva, “A cache-aware parallel implemen-
tation of the push-relabel network flow algorithm and experimen-
tal evaluation of the gap relabeling heuristic,” in Proc. 18th ISCA
Int. Conf. Parallel Distrib. Comput. Syst., 2005, pp. 41-48.

B. Hong and Z. He, “An asynchronous multithreaded algorithm
for the maximum network flow problem with nonblocking global
relabeling heuristic,” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 6, pp. 1025-1033, Jun. 2011.

D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach. San Mateo, CA, USA: Morgan
Kaufmann, Aug. 1998.

P. Sanders, S. Egner, and K. Korst, “Fast concurrent access to par-
allel disks,” in Proc. 11th ACM-SIAM Symp. Discr. Algorithms,
2000, pp. 849-858.

A. S. Tosun, “Replicated declustering for arbitrary queries,” in
Proc. 19th ACM Symp. Appl. Comput., Mar. 2004, pp. 748-753.

A.S. Tosun and H. Ferhatosmanoglu, “Optimal parallel I/O using
replication,” in Proc. Int. Conf. Parallel Process. Workshops, 2002,
pp- 506-513.

N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy, “Design tradeoffs for ssd performance,” in
Proc. Annu. Tech. Conf., 2008, pp. 57-70.

D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and A.
Rowston, “Everest: Scaling down peak loads through i/o
off-loading,” in Proc. 8th USENIX Conf. Operating Syst. Des.
Implementation, 2008, pp. 15-28.

D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A.
Rowston, “Migrating server storage to SSDs: Analysis and trade-
offs,” in Proc. 4th ACM Eur. Conf. Comput. Syst., 2009, pp. 145-158.
S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda,
“Characterization of storage workload traces from production
windows servers,” in Proc. IEEE Int. Symp. Workload Characteriza-
tion, 2008, pp. 119-128.

TPC Benchmark C [Online]. Available: http://www.tpc.org/
tpc_documents_current_versions/pdf/tpc-c_v5-11.pdf, 2010.

TPC Benchmark E [Online]. Available: http://www.tpc.org/
tpc_documents_current_versions/pdf/tpce-v1.14.0.pdf, 2015.

K. Mehlhornand S. Naher,“LEDA: A platform for combinatorial
and geometric computing,” Commun. ACM, vol. 38, no. 1, pp. 96—
102, 1995.

J. S. Bucy, J. Schindler, S. W. Schlosser, G. R. Ganger, and
Contributors., “The DiskSim simulation environment version
4.0 reference manual,” Carnegie Mellon Univ. Parallel Data
Lab, Tech. Rep. CMU-PDL-08-101, May 2008.

Nihat Altiparmak (M’10) received the BS degree
in computer engineering from Bilkent University,
Ankara, Turkey in 2007, and the MS and PhD
degrees in computer science from the University
of Texas at San Antonio in 2012 and 2013,
respectively. He is currently an assistant profes-
sor in the Computer Engineering and Computer
Science Department, University of Louisville. His
research interests include storage systems, dis-
tributed systems, networking, and network secu-
rity. He is a member of the IEEE.

Ali Saman Tosun (M06) received the BS
degree in computer engineering from Bilkent Uni-
versity, Ankara, Turkey in 1995, and the MS and
PhD degrees from the Ohio State University in
1998 and 2003, respectively. He joined the
Department of Computer Science, University of
Texas at San Antonio in 2003. He is currently
an associate professor in the Department of
Computer Science, University of Texas at San
Antonio. His research interests include storage
systems, large-scale data management, and

é

security. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

