2014 IEEE 22nd International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems

Continuous Retrieval of Replicated Data from
Heterogeneous Storage Arrays

Nihat Altiparmak

Dept. of Computer Eng. and Computer Science

University of Louisville
Louisville, KY 40292
nihat.altiparmak @louisville.edu

Abstract—Replicated declustering techniques reduce response
times of disk requests by distributing data among multiple
disks and retrieving in parallel. Efficient retrieval of replicated
data from multiple disks is a challenging problem, especially
for heterogeneous storage architectures receiving continuous
disk requests. Existing techniques either do not consider the
heterogeneity of the disks or handle the requests in a discrete
manner assuming the storage system is idle. In this paper, we
focus on continuous retrieval techniques in heterogeneous storage
architectures to minimize the response time of disk requests
considering waiting time and service time of the requests as well
as the execution time of the retrieval algorithm. We investigate
multiple trade-offs between these three factors affecting the
response time of a disk request and propose a maximum flow
based adaptive retrieval strategy. Performance of the proposed
and existing continuous retrieval techniques are evaluated using
simulations driven by real world traces and various homogeneous
and heterogeneous multi-disk storage configurations.

Keywords—continuous retrieval, maximum flow, replicated
declustering, storage arrays

I. INTRODUCTION

Storage arrays have emerged to address the challenges of
scalable storage and efficient retrieval of large datasets. Besides
having hundreds of disk drives, a typical storage array includes
controllers with processing units and caching memories. A
storage array controller manages the data mappings to the
drives, simultaneously handling fault recovery and data re-
trieval functionalities. Revenue for the enterprise storage array
market clearly indicates the usage trend of these devices as big
data challenges emerge. The total revenue for the first three
quarters of 2010 was $3.72 billion, an increase of 13% over
the same period in 2009 [1]. As of the first quarter of 2013,
this amount reached to $5.5 billion [2].

There are many high-end enterprise storage arrays ex-
isting in the market [3], [4], [5], [6]. Besides the storage
functionalities, these devices also include powerful processing
units enabling advanced storage and retrieval strategies. For
example, a single EMC Symmetrix Vmax Array has 240 disks,
four Quad-core 2.33 GHz Intel Xeon processors, and supports
up to 128 GB of memory [3]. It is possible to connect multiple
Vmax arrays together to support up to 2400 drives and 1 TB
of memory. Price of such a system starts from $250,000 and
goes up to millions of dollars. Therefore, efficient storage and
retrieval strategies are necessary for the performance of such
an expensive equipment.

1526-7539 2014
U.S. Government Work Not Protected by U.S. Copyright
DOI 10.1109/MASCOTS.2014.43

285

Ali Saman Tosun
Department of Computer Science
University of Texas at San Antonio
San Antonio, TX 78249
tosun@cs.utsa.edu

Depending on the disk drives they include, storage arrays
can be homogeneous or heterogeneous (hybrid). A homoge-
neous storage array is composed of identical disk drives. On
the other hand, heterogeneous storage arrays include drives
with different characteristics. Recent improvements in flash
density led academia and industry to consider storage arrays
partially or entirely based on flash technology. Several homo-
geneous flash arrays [7], [8], [9], [10], [11] and heterogeneous
storage arrays [12], [13], [14], [15] combining magnetic and
flash disks have been launched recently.

In a storage array, efficient data allocation and retrieval
plays an important role for high performance parallel 1/O.
Declustering or striping is a common technique for effi-
cient data allocation. Data space is partitioned into disjoint
regions (buckets) and these regions are distributed among
multiple disks so that requests can be retrieved in parallel.
Besides efficient data distribution [16], [17], replication is also
frequently applied to improve the performance and provide re-
liability. Many replicated declustering techniques are proposed
in the literature [18], [19], [20], [21], [22], [23]. Readers are
directed to [24] for an in-depth comparison and analysis of
replicated declustering schemes.

A disk request is generally composed of multiple data
buckets and in a storage system using replication, a replica
selection mechanism is necessary for retrieval of these buckets.
Retrieval algorithms and heuristics are used for this purpose.
Existing retrieval techniques either do not consider the hetero-
geneity of the disks or do not provide a continuous retrieval
strategy. For instance, shortest-queue is a commonly used
retrieval heuristic in multimedia applications, where the disk
with the shortest queue size in terms of number of buckets is
selected for retrieval of a bucket among the disks including
a copy of that bucket [25], [26], [27]. Such a strategy may
yield competitive results in homogeneous systems; however, it
obviously neglects the individual disk performances making
it unsuitable for heterogeneous storage architectures. In a
heterogeneous storage array, sometimes a flash based disk with
a larger queue size might be a better choice than a magnetic
disk with a smaller queue size.

Given a single request (set of buckets to be retrieved), max-
imum flow based retrieval algorithms guaranteeing the optimal
Service Time, the time that the storage device spends while
retrieving the request, are provided for homogeneous [28],
[29], [30], [31] and heterogeneous [32], [33] storage arrays.
Although optimal service time is an important property for

IEEE
computer
® psouety

a single request, realistic storage systems receive requests
continuously and there are many other factors to be considered
in continuous retrieval. For instance, Execution Time of the
retrieval technique is an important factor delaying the retrieval
duration. In some cases, using a heuristic based approach not
guaranteeing the minimum service time might lead to a better
performance than the maximum flow technique considering
the low execution time of heuristic approaches. Besides the
execution time and service time, an efficient continuous re-
trieval strategy should also consider the Waiting Time, the
time that the request spends in storage array controller and
individual disk queues. If a certain disk has a large queue wait
time, sometimes retrieving a bucket from a slower disk with
a shorter queue wait time might yield a better performance in
heterogeneous storage architectures.

In this paper, we investigate the trade-offs mentioned above
and propose an adaptive continuous retrieval strategy minimiz-
ing the Response Time of the disk requests by considering
Execution Time, Service Time, and Waiting Time. We first
analyse the trade-off between batching multiple requests for
better load balancing and shorter service time versus retrieving
them immediately for smaller waiting time. Then, we focus on
the performance of different retrieval algorithms and heuristics
to investigate the trade-off between the execution time of the
retrieval technique and the service time of the request. Algo-
rithms guaranteeing the optimal service time generally require
larger execution time; however, heuristic based solutions do
not guarantee the minimum service time. Finally, we introduce
a maximum flow based adaptive continuous retrieval strategy
and emphasize the advantage of adaptively rescheduling pre-
viously scheduled but unretrieved data buckets. Since these
buckets are not retrieved yet, they can be combined with a
newly arrived request for better load balancing and shorter
service time.

The main contributions of this work are as follows:

e It theoretically proves the advantage of batching mul-
tiple disk requests on the total service time when

maximum flow retrieval algorithm is in use.

It introduces the idea of adaptively rescheduling pre-
viously scheduled but unretrieved data buckets based
on disk queue sizes and disk performances.

It provides a detailed performance analysis of the pro-
posed and existing methods using simulations driven
by real world storage traces on various homogeneous
and heterogeneous storage array configurations.

II. PRELIMINARIES

In this section, we define the terms used through the paper,
provide background information on replicated declustering,
and retrieval techniques.

A. Definitions

We define the terms used in this paper as follows:

e Execution Time: The time spent while the retrieval

technique decides the retrieval schedule.

Service Time: The time spent while the storage device
retrieves the request.

286

Waiting Time: The time a request spends in storage
array controller and individual disk queues.

Response Time: The time elapsed between the arrival
and completion of a request, which is calculated as
sum of Execution Time, Service Time, and Waiting
Time.

B. Replicated Declustering

A replicated declustering of 7 x 7 grid using 7 disks is
given in Figure 1. The grid on the left represents the first copy
and the grid on the right represents the second copy. Each
square denotes a data bucket and the number on the square
denotes the disk that bucket is stored at. Request R; in Figure 1
has 6 buckets. For retrieval of 6 buckets from homogeneous
disks, the best we can expect is [%} =8 =1
disk access and this happens if the buckets of the request are
spread to the disks in a balanced way. In most cases, this
is not possible without replication [34]. When replication is
used, each bucket is stored on multiple disks and a single
disk should be chosen for the retrieval of each bucket. For
instance, theoretically, request R; has an optimal retrieval cost
of 1. However, since in the first copy the buckets [0, 0] and
[2,1] are both stored on disk O, retrieval using the first copy
requires 2 disk accesses. When we consider both copies, we
can retrieve Ry in 1 disk access by retrieving the bucket [2, 1]
from disk 5 using the second copy.

R R
01 [R[3]|4|5]|6 0|1 |R|3]|4]|5]6
314(5]6(0|1 (2 23 (4|51(6|0]1
601 |2(3|4]5 415601123
2[314(5(6|0]|1 601123 1]4]|5
51601234 112(3(4(5|6]0
112|3]4(5]610 314(5]|6(0(1 (2
4151601123 5(16|0(1]21(3 4

Fig. 1. Replicated Declustering

C. Retrieval Algorithms and Heuristics

Retrieval decision specifies the disk where each bucket of
a request should be retrieved from. This decision is trivial if
there is no replication in the system. In that case, there is
only one candidate disk that a bucket can be retrieved from.
However, in case of replication, retrieval algorithms/heuristics
are necessary to determine the copy to be used. As plotted in
Figure 2, retrieval algorithm is executed in the storage array
controller and it is responsible from dispatching of the requests
to the individual disk queues. Since retrieval algorithms do not
perform any scheduling decision on individual disk queues,
they are also referred as routing algorithms.

One way to come up with retrieval decision is the usage of
a maximum flow algorithm [28]. For a given request, maxflow
retrieval algorithm guarantees the optimal retrieval decision,
i.e., the request is retrieved in the minimum Service Time
possible. Maximum flow representation of request R; given
in Figure 1 is provided in Figure 3. For each bucket and for
each disk we create a vertex. In addition, two more vertices
called source and sink are created. The source vertex s is
connected to all the vertices denoting the buckets and all the
vertices denoting the disks are connected to the sink vertex ¢.
An edge is created between vertex v; denoting bucket ¢ and

Requests

Dispatching of the
Requests to the Disks

Storage Array Controller

E E E e E Disk Queues
ool [| :
g
HDD SSD HDD SSD
(7.21{) (High) (151() <Low)
RPM End / \RPM End
Fig. 2. Retrieval Process

vertex v; denoting disk j if bucket 7 is stored on disk j. After
setting the capacities of the edges appropriately, running the
maximum flow algorithm will yield the optimal service time
retrieval schedule. Maximum flow is shown using thick lines
in Figure 3. Flow information indicates the copy to be chosen
in retrieval for the optimal service time retrieval of request R;.

BLOCKS

DISKS
0

Fig. 3. Max-flow representation of request R

Besides the maximum flow based retrieval algorithm guar-
anteeing the optimal service time, different heuristic based
retrieval techniques are also proposed [27], [35], [33]. We call
them heuristics because they do not guarantee the minimum
service time; on the other hand, they generally yield a smaller
execution time. When a single request is considered, service
time might be considered as a sufficient metric by itself for
the performance; however, in a storage system receiving disk
requests continuously, execution time and waiting time also
affect the performance dramatically. Considering all of these
factors, various optimizations techniques can be applied to
improve the performance of multi disk storage systems.

III. CONTINUOUS RETRIEVAL SCHEMES

In this section, we discuss various continuous retrieval
techniques that can be used together with a retrieval algorithm
to reduce the response time of disk requests.

A. Batching

Batching is a common technique used in request/job
scheduling [36], [37], [38]. In this technique, when a new

287

request arrives, we first check the state of the storage system. If
the storage system is idle, we determine the retrieval schedule
of the request immediately. However, if the storage system
is busy with retrieving the buckets of previous requests, then
we batch the incoming requests until the storage system
becomes idle again. When the storage system becomes idle,
we determine the retrieval schedule of the batched request at
once.

The idea of batching as a continuous retrieval technique
is explained using Figures 4 and 5. Figure 4(a) represents a
single request arriving at time ¢ with the optimal service time
of (t; —tg). Figure 4(b) illustrates the retrieval schedule of this
request. Numbers on the x-axis represent the disks, rectangles
on a disk represent the buckets to be retrieved from that disk,
and the y-axis represents the time. Assuming that the optimal
retrieval schedule is as in Figure 4(b), then the optimal service
time is ¢; and it is determined by the disk having the largest
retrieval time; disk O in this case.

4

tO

(a) Request (b) Retrieval Schedule

Fig. 4. Request Representation for Batching

Based on the representation provided in Figure 4, an
example of the batching idea is presented in Figure 5. Assume
that the storage system is idle at time ¢y. Since the storage
system is idle, retrieval schedule of R1 is calculated and it is
dispatched to the individual disk queues immediately. Assume
also that the retrieval of R1 will be completed at time ¢4. Since
the storage system is busy until time ¢4, all the requests arriving
until ¢4 are batched. At time t4, retrieval schedule of the
batched request (R2+ R3+ R4) is calculated at once, in a single
run of a retrieval algorithm. The idea of batching is especially
useful for the maximum flow based retrieval algorithm since
it guarantees the optimal service time for a given request.
Now, let us theoretically investigate the advantage of batching
multiple requests on the total service time for the maximum
flow retrieval algorithm.

Batched

D [‘ R2+R3+R4

iy

te

—
]

Fig. 5. Batching Example

Assume that the storage system receives two requests R;
and R, at the same time, each representing a set of buckets to
be retrieved. Let S; and S3 be individually calculated optimal
service times of Ry and Ry respectively, and S;,4 be the total
service time of retrieving R; and Ry using their individually

calculated optimal service time schedules. Then, we can state
the following proposition:

Proposition 1: Maz(S1,52) < Sina < (S1+ Sa).

The minimum value of S;,q = Max(S1,S2) is achieved
if the disk that causes the largest service time in R; is not
used in Ry or vice versa. On the other hand, the maximum
value of Sig = (S1 + S2) is achieved if and only if the
largest service time is caused by the same disk in both of the
requests. These can be better visualized by considering the
representation in Figure 4(b) for both S; and S individually,
and combination of those two figures for .S;,4. In other words,
we are lucky if S5 uses the disks that S; does not use or vice
versa. Therefore, when we calculate the optimal service time
schedules individually, we do not have any control over where
Sina falls within the range given in Proposition 1. On the other
hand, when we batch R; and Rq, the batched request can be
represented as a single request Ry, = R1 U Ro.

Lemma 1: Assume that Rp,y1 = Rq U Ry represents the
batched request and Ry N Ry = () and Spqs1 represents the
optimal service time of Rpqt1. Then Spat1 < Sind.

Proof: Here, Rp,11 represents the batched request of Ry
and Ry and these requests do not include any common bucket,
i.e. |Rpat1| = |R1| + |Rz2|. Lemma 1 follows since the Max-
flow retrieval guarantees the optimal service time for a set of
buckets to be retrieved. In other words, for the same set of
buckets, a service time less than Sp,;; cannot be achieved. W

Lemma 1 proves that even if R; and Ry are disjoint sets,
batching will result in a service time at least as good as
retrieving these requests individually. Now consider another
request R, which is created by substituting one or more
buckets of Ro with R;’s buckets so that Ry N R, # 0. In
this case, batching has more chance to yield a smaller service
time as stated in the following lemma:

Lemma 2: Assume that Rp.:2 = R1 U R represents the
batched request and Ry N R, # 0 and Spaso represents the
optimal service time of Rpgte. Then Spata < Spati-

Proof: In this case, Rpq2 represents the batched request
of Ry and R}, and these requests include at least one common
bucket i.e. |Rpa2| < |R1i| + |R5|- The proof is based on the
fact that the maximum value of a set of numbers cannot be
increased by taking some numbers out of the set. By the set
theory, we know that |R; U Ry| = |R1| + | RS — |R1 N RY|.
Since Ry N RY, #), then we can state that |Rpat2| < |Rpat1]
and Rpai2 C Rpar1- In other words, Sy is achieved by
subtracting some buckets from Spu¢1. [|

Lemma 2 can be visualized by considering Figure 4(b) and
removing some buckets from the top of some disks. Clearly,
by removing a bucket, we cannot achieve an optimal service
time greater than ¢;; however, removing a bucket from disk
0 guarantees achieving an optimal service time less than ¢;.
Lemmas 1 and 2 allow us to state the following theorem:

Theorem 1: Optimal service time of a batched request is
always less than or equal to the total service time achieved by
retrieving these requests using their individual optimal service
time schedules.

Although batching multiple requests has an advantage in
terms of total service time, an extra waiting time will be

288

introduced to the requests if some disks to be used in retrieval
are idle during this batching process. For instance, request R2
in Figure 5 waits (t4 — ¢1) time, R3 waits ({4 —t2) time, and
R4 waits (t4 — t3) time during the batching process. Note that
if all the disks are busy while batching, then this extra waiting
time might not have any negative effect on the response time.

In addition to the possible waiting time disadvantage,
batch size may continuously increase if no upper limit is set
especially when the system is overloaded. Such an increase
in the batch size will cause an increase in the execution time
of the retrieval algorithm if the algorithm does not have a
sub-linear time complexity. In order to eliminate excessive
batch sizes for polynomial time algorithms like the maximum
flow technique, an appropriate upper limit should be set for
the maximum batch size depending on the system parameters.
When this limit is reached, currently batched request should
automatically be processed.

B. Immediate-conservative

The second continuous retrieval technique we consider
is retrieving the requests as soon as they arrive in order to
eliminate the extra waiting time introduced by the batching
technique. Although immediately scheduling eliminates this
additional waiting time, it will introduce a larger service time if
the requests are scheduled in a discrete way assuming zero disk
queue waiting times. One way to improve the service time in
this case is considering the disk slack times integrated into the
retrieval algorithm. Since the queue length and performance
(access/transfer times) of the individual disks are known to
the system, it is possible to determine the load of each disk at
any given time by checking its queue size. By incorporating
this initial load information into the retrieval algorithm, we can
improve the service time through better load balancing.

(b) Disks

(a) Request

Fig. 6. Request representation for immediate-conservative

Immediate-conservative continuous retrieval technique is
explained using Figures 6 and 7. Similar to Figure 4, Fig-
ure 6(a) represents a single request with the optimal service
time of (¢t —to) and Figure 6(b) illustrates the retrieval sched-
ule of this request. Different than Figure 4, black rectangles
in Figure 6 represent the initial loads of the disks at time ¢;.
Based on the representation provided in Figure 6, an example
of immediate-conservative technique is presented in Figure 7.

R2 with Initial
. Load fromR1

tj2 G

Fig. 7.

Immediate-conservative example

Assume that the request R; is already scheduled at time ¢
and a new request Ry arrives at time ¢;. Using the immediate-
conservative technique, we can immediately determine the
initial load of each disk at time ¢; and provide this informa-
tion to the retrieval algorithm together with the new request
Ry. By this way, we eliminate the extra waiting time that
the batching technique introduces for R,. Besides, since the
retrieval schedule is determined immediately considering the
slack times of the disks, there is a possibility to retrieve some
requests apriori, before completing the retrieval of previously
arrived requests. An illustration of the apriori retrieval concept
is provided in Example 1.

Example 1: Consider the allocation scheme presented in
Figure 8 for a 5 x 5 grid using a total of 5 disks. Assume that
there are two copies for each data bucket. Figure 8(a) denotes
the allocation scheme for the first copy and Figure 8(b) denotes
the allocation scheme for the second copy. For each allocation
scheme, a square denotes a data bucket and the number on a
square denotes the disk that data bucket is stored at.

P o P o
3[1]j2]0[3 0[2[312]0
0N2[41 22734
21210]4||3 2131112
1101121 4/3/1|4)4
113|242 213141010
(a) Copy 1 (b) Copy 2

Fig. 8. Data allocation for Example 1

Request r; is composed of 5 data buckets as shown in
Figure 8. Optimal service time retrieval of r; is illustrated
using vertical zigzag patterned blocks in both Figure 8 and
Figure 9. The x-axis in Figure 9 represents the disks, the
numbers below the disks represent their retrieval costs, and
the y-axis represents the time. Request r; arrives at time 8
msec and the retrieval of r; is completed at time 16.3 msec.
At time 10 msec, storage system receives another request 7o,
which is composed of 4 data buckets as shown in Figure 8.
Immediately retrieving r2 using the initial load information of
ry results in an optimal service time of 6.1 msec. Therefore,
retrieval of 7o is completed at time 16.1 msec. In this case,
since ry is fully retrieved before the previous request rp is
fully retrieved; ro is considered as an apriori retrieval, i.e.,
idle disks are exploited while r; is being processed.

Time (msec.)

163 -
16.1 -~ - %

0 %1% 2 g%?‘ 4 Disks
0.2 m Costs (msec.)

Fig. 9. Data retrieval for Example 1

AAAAAAAAAAAAS

289

Note that considering the initial load information has a
crucial effect on retrieving a request apriori with no or minimal
waiting. If the retrieval algorithm did not know that disk 0 had
a large initial load at time 10, then it might have scheduled
bucket [0,0] to disk O resulting in a larger retrieval time.
Although immediate-conservative eliminates the extra waiting
time of the batching idea and introduces the notion of an
apriori retrieval, it is still expected to yield a larger total service
time than the batching technique as stated in Theorem 1.
Immediate-conservative technique is aware of disk slack times;
however, its performance can be improved even further by
using an adaptive retrieval strategy.

C. Immediate-adaptive

As an improvement on immediate-conservative, we pro-
pose immediate-adaptive that allows rescheduling of the pre-
viously scheduled but unretrieved buckets together with a new
request. Figure 10(a) represents a single request, black rectan-
gles represent the initial load and white rectangles represent
the scheduled but unretrieved buckets at time ¢;. Retrieval
schedule of this request is given in Figure 10(b) showing initial
loads and unretrieved buckets of each disk.

(a) Request

(b) Disks
Fig. 10. Request representation for immediate-adaptive

Based on the representation given in Figure 10, an example
of immediate-adaptive is presented in Figure 11. Assume
that the request R; is already scheduled at time ¢, and a
new request Rp arrives at time ¢;. Using the immediate-
adaptive technique, in addition to determining the initial loads
of each disk as in the immediate-conservative case; we can also
determine the unretrieved buckets of each disk by checking
the related disk queue. Then, these unretrieved buckets can be
combined with the buckets of the new request R,. Modified
Ry together with the initial load information will provide more
flexibility to the retrieval algorithm. By this way, we can
reschedule the buckets of the previous requests considering
the buckets of the new request and the disk slack times.

. Adaptive R2

4 by

Fig. 11.

Immediate-adaptive example

Note that this technique is not expected to provide any
benefit to the heuristic based solutions since they perform the
retrieval decision in an online fashion without considering the
big picture. However, it is expected to decrease the response
time of requests when the maximum flow retrieval algorithm is
in use based on Theorem 1, especially if the request sizes are

large and the request interarrival times are low. Low request
interarrival times with large request sizes will enable more
buckets to be added to the current request from the previous
requests. By this way, more flexibility will be provided to the
retrieval algorithm.

However, this technique might also cause starvation de-
pending on the disk scheduling algorithm used in the disk
queues. In other words, retrieval of some buckets might con-
tinuously be delayed causing very large response times for the
requests including these buckets. Starvation will automatically
be eliminated if first-come, first-served (FCFS) scheduling is
used in the disk queues. However, even with other scheduling
algorithms, an upper limit on the amount of time to reschedule
a bucket can be set to eliminate possible starvation issues.

IV. EVALUATION

In this section, we evaluate the performance of the pro-
posed continuous retrieval techniques using simulations driven
by real storage traces and considering execution times, waiting
times and service times of the requests.

A. Traces

We used three commonly used multi-disk storage system
traces previously used in various storage related studies [39],
[40], [41]. These traces are publicly distributed via the online
trace repository provided by the Storage Networking Industry
Association (SNIA) [42].

e Exchange: The first workload we use is the Exchange
workload, which is taken from a server running Mi-
crosoft Exchange 2007 inside Microsoft [43]. It is
a mail server for 5000 corporate users consisting of
around 40 million read requests. The trace covers a 24-
hour weekday period starting at 2:39pm on the 12th
of December, 2007 and it is broken into 96 intervals
of 15 minutes each.

e TPC-C: The second workload we use is TPC-C, which
is an online transaction processing (OLTP) benchmark
simulating an order-entry environment [44]. It is a mix
of five concurrent transactions of different complexi-
ties. The TPC-C trace covers 36 minutes of workload
and consists of around 210 million read requests. The
trace is taken on 26th of February, 2008 and it is
broken into 6 intervals of 6 minutes each.

e TPC-E: The third workload we use is TPC-E, which is
another OLTP benchmark simulating the workload of
a brokerage firm [45]. TPC-E is the successor of TPC-
C, its transactions are more complex than those of
TPC-C, and they more closely resemble modern OLTP
transactions. The TPC-E trace covers 84 minutes of
workload consisting around 101 million read requests.
The trace is taken on 18th of October, 2007 and it is
broken into 6 intervals of 10 to 16 minutes each.

Exchange trace statistics are provided in Figure 12 for
each trace interval shown on the x-axis. Figure 12(a) shows
the number of requests per interval. The minimum number
of requests is performed in interval 48 with around 15000
requests and the maximum number of requests is performed in

290

Number of Requests

Request Size

Fig. 12. Exchange Trace Statistics
TPG-C - Number of Requests Per Interval
360407 . . ; T
o 3.55e+07 [e]
] ot
g
g 3.5e+07 - : 1
& E
5 ;
8 3.45e+07 |- 1
3
E ¢
5 k
2 34es07 ¥ 1
3.35e+07 _ L L L L
1 2 3 4 5 6

Request Size

Fig. 13.

Number of Requests

Request Size

EXCHANGE - Number of Requests Per Interval
1e+07 T T T T T T T T T

16406 £ i E

100000 £

10000 TS R R W T R
0 10 20 30 40 50 60 70 80 90

Intervals (15 minutes each)

(a) Total Number of Requests

EXCHANGE - Max/Avg Request Size Per Interval
10000 T T

Requests Per Seconds

EXCHANGE - Max/Avg Requests Per Second
100000 T T

1T
Maximum Requests/sec

Average Requests/sec +

10000

1000

100 [t

(b) Requests Per Second

el
“ ‘| II“ILI Ill ||
il
10 20 30 40 50 60 70 80 90
Intervals (15 minutes each)

>
o

EXCHANGE - Request Interarrival Statistics

T
Maximum Request Size
Average Request Size +

1000 |

| |

i

il

TR)

0 10 20 30 40 50 60 70 80 90
Intervals (15 minutes each)

i
i
100 I
i
f
|

10

(c) Request Size

Intervals (6 minutes each)

(a) Total Number of Requests

TPC-C - Max/Avg Request Size Per Interval

Time (msec)

Requests Per Seconds

10000 T T T T T T T T T

1000

100

10

1 mean —+— 4]

P
0 10 20 30 40 50 60 70 80 90
Intervals (15 minutes each)

0.1

(d) Request Interarrival Times

TPC-C - Max/Avg Requests Per Second
100000

99000 [
98000 1

T T T T
Maximum Requests/sec
Average Request/sec + b

97000 1
96000 1
95000 B
94000 [1
93000 1
92000

1 2 3 4 5 6
Intervals (6 minutes each)

(b) Requests Per Second

TPC-C - Request Interarrival Statistics

T T T T T T
Maximum Request Size

Average Request Size +

Time (msec)

0.1 T T T T

mean —+—
UV

1 2 3 4 5 6
Intervals (6 minutes each)

(c) Request Size
TPC-C Trace Statistics

TPC-E - Number of Requests Per Interval
1e+08 T T T T

stdev
99th Percentile -
0.001 . . : ;
1 2 3 4 5 6
Intervals (6 minutes each)

(d) Request Interarrival Times

TPC-E - Max/Avg Requests Per Second

1e+07 | | E

1e+06 | Lo

Requests Per Seconds

35000 [Maximum Requests/sec ——

30000 | Average Requests/sec +
25000 |
20000 |
15000]

10000 1

5000 J 4

100000 . . L .
1

2 3 4 5 6

Intervals (10-16 minutes each)

(a) Total Number of Requests

TPC-E - Max/Avg Request Size Per Interval

1 2 3 4 5 6
Intervals (10-16 minutes each)

(b) Requests Per Second

TPC-E - Request Interarrival Statistics
1000

"Maximum Request Size — j
Average Request Size +

Time (msec)

"mean —+— "
stdev -- - - .
Egoth Percentile A

100

0.01 - - . -

1 2 3 4 5 6
Intervals (10-16 minutes each)

(c) Request Size

Fig. 14. TPC-E Trace Statistics

1 2 3 4 5 6
Intervals (10-16 minutes each)

(d) Request Interarrival Times

interval 52 with around 7 million requests. Figure 12(b) shows
the average and the maximum number of requests performed
in one second for each interval. Figure 12(c) plots the average
and the maximum request size per interval. By the request
size, we mean the number of buckets requested in one request.
Finally, Figure 12(d) shows the statistics for request interarrival
times per interval, which is a crucial factor for the immediate-
adaptive approach. Similar statistics for TPC-C and TPC-E are
also provided in Figures 13 and 14 respectively. In order to
keep up with the request arrival rates and the request sizes of
these traces, we simulated the Exchange trace using 100 disks
and the TPC-C and the TPC-E traces using 1000 disks.

B. Storage Configurations and Parameters

We performed simulations using five different disk models;
three hard-disk drives (HDD) with different revolutions per
minute (RPM) and two solid-state disk (SSD), one high-end
and one low-end. Specifications of the disks are provided in
Table 1. All values except the Average Access Time value are
obtained from the factory specifications of the related disk.
Average Access Time is the average time spent to reach a data
bucket in a disk and we calculated it experimentally running
a read only benchmark on the real disks. Since the Average
Access Time value should roughly be the sum of Seek Time
and Latency, factory specifications of the disks seem to be
consistent with the values we calculated experimentally.

TABLE L Disks
[Producer[Model [Type[RPM]Seek T.[Latency [Bandwidth[Avg. Access Time|
Seagate |Barracuda| HDD|7.2 K| 8.5 ms | 4.1 ms | 57 MB/s 13.2 ms
WD Raptor |HDD|10 K| 4.2 ms | 5.5 ms | 68 MB/s 8.3 ms
Seagate | Cheetah |HDD| 15 K| 3.6 ms | 2.0 ms | 86 MB/s 6.1 ms
0CZ Vertex |SSD| - - 0.1 ms | 197 MB/s 0.5 ms
Intel X25-E |SSD| - - 0.07 ms | 250 MB/s 0.2 ms

In order to calculate the Service Time in our simulations, we
need to know the average time it takes to retrieve a bucket from
a disk. Therefore, we should consider both the Average Access
Time and the transfer time of a bucket. In our simulations,
we assumed that the bucket size is equal to the filesystem
block size (4KB is the default value in exz2/ext3/ext4). Using
4KB for each bucket, the transfer time of a bucket can be
calculated using the average Bandwidth value provided in the
table. The transfer time of a Barracuda HDD is calculated as
0.068 milliseconds and the transfer time of an X25-E SSD is
calculated as 0.015 milliseconds. These values indicate that
the average access time value is the dominating factor in
the retrieval time calculation. Therefore, we believe that the
average access time is a good approximation by itself to be
used for the Service Time calculation in our simulations. For
larger bucket sizes, transfer time can also be incorporated into
the retrieval time calculation easily.

Using the disks provided in Table I, we created four differ-
ent homogeneous and heterogeneous multi-disk storage archi-
tectures. Table II provides these configurations. disk_conf1 and
disk_conf2 represent homogeneous storage architectures, the
former using the slowest disk (Barracuda HDD 7.2K RPM) of
Table I and the latter using the fastest disk (Intel X25-E SSD)
of Table 1. disk_conf3 and disk_conf4 represent heterogeneous
storage architectures. In disk_conf3, disks are chosen with
equal probabilities. In disk_conf4, extra 10% of the data is ran-
domly placed in a fast SSD so that it can act as a cache in front

291

of the HDDs. Note that no cache replacement policy is applied
in disk_conf4 in order to evaluate the proposed algorithms
fairly. Instead, we used a static caching strategy where the
cached buckets remain constant during the experiment period.

TABLE II. STORAGE CONFIGURATIONS
[Storage Config.[Barracuda|[Raptor |Cheetah|Vertex |X25-E|
disk_conf1 100% - - - -
disk_conf2 - - - - 100%
disk_conf3 20% 20% 20% 20% | 20%
disk_conf4 333% |333% | 33.3% - 10%

C. Allocation Scheme and Query Type

Storage traces disclose which bucket is retrieved from
which disk; however, they do not provide any information
on where the other copies of the requested buckets reside.
For this reason, we assume that Random Duplicate Allocation
(RDA) [46] is used to distribute the copies of a data bucket to
the disks. RDA stores a bucket into ¢ disks chosen randomly
from the set of disks used in the system. We have conducted
simulations for the copy sizes (c) of 2, 3, 4, and 5. Since the
data is distributed to the disks randomly, we also used queries
of arbitrary shape using the query size information retrieved
from the trace.

D. Algorithms and Heuristics

The following algorithms and heuristics are implemented
for the experiments:

e random is a heuristic based on a complete random
selection. Retrieval of a bucket is performed from the
disk randomly chosen among the pool of the disks

having a copy of the bucket.

shortest-queue is another heuristic first proposed in
[27] and also used in [25], [26] as a retrieval technique.
To make the retrieval decision of a bucket, first all the
disks carrying a copy of the bucket is determined and
then the disk with the smallest number of buckets in
its queue is selected.

power-of-two-choices is a heuristic based solution
inspired by [35] for the retrieval of replicated data.
In order to retrieve a data bucket, two candidate disks
are randomly selected among the pool of the disks
having a copy of the bucket. Retrieval is performed
from the disk resulting in the shortest retrieval time.
The disk resulting in the shortest retrieval time can
be determined considering the number of buckets in
the disk queue and the Average Access Time of the
particular disk.

online is a heuristic achieved by generalizing the
power-of-two-choices to all disks [33]. Instead of
two random disks, all the disks carrying a copy of
the bucket to be retrieved are checked and the disk
yielding the shortest retrieval time is selected. Note
that shortest-queue is expected to perform similar
to online in homogeneous storage architectures since
access/transfer times of the disks are equivalent for
homogeneous disks.

max-flow is a network flow based retrieval algorithm
guaranteeing the minimum service time. We imple-
mented the integrated technique proposed in [32]
using Goldberg’s hi_pr implementation for the maxi-
mum flow calculation. hi_pr is based on push-relabel
method [47] and currently is the fastest sequential
implementation available that we are aware of. It has
the time complexity of O(|V?|\/|E|) for a graph
having |V'| vertices and |F| edges [48]. Note that
among these implementations, maxflow is the only
technique guaranteeing the minimum service time.

We implemented the algorithms and heuristics described
above together with the proposed continuous retrieval tech-
niques in C programming language and compiled using gcc
optimization level 3 (-O3). The machine we used for simu-
lation has two Intel Xeon X5672 quad-core processors with
total of 8 cores and 32GB of main memory. It runs Ubuntu
10.04.03 LTS operating system and each core has 3.2 GHz
clock speed. In experiments, we used a single core only.

E. Results

We perform the evaluation in two steps. First, we show that
online clearly outperforms random and power-of-two-choices.
Next, we compare the performance of continuous retrieval
techniques using online, shortest-queue, and max-flow.

1) Performance of Retrieval Heuristics: In this section, we
look at the performance of online, random, and power-of-
two-choices heuristics, and compare their performance with
maxflow. Our aim here is to investigate the trade-off between
the execution time of the retrieval technique and the service
time of the request. In order to make the comparison without
the effect of continuous retrieval techniques, we handled the
requests in a discrete way. In other words, we found the
retrieval decision of every disk request individually assuming
that all the disks are idle for every request. This was nec-
essary since continuous retrieval techniques could result in
different batch sizes for different retrieval algorithm/heuristic.
We simulated the storage traces and calculated the average
service time and average execution time values for different
storage configurations. Results are shown in Figure 15 for the
Exchange trace, where x-axis shows the copy amount and y-
axis shows either execution time or service time. We do not
show the results for the TPC-C and TPC-E traces since they
behave similarly.

As it can be seen from Figures 15(a) and 15(c), execution
time of maxflow is clearly larger than the heuristics while the
execution time of heuristics are very close to each other. Beside
this, execution time of maxflow increases when the storage
system becomes heterogeneous. This is expected because the
retrieval decision gets harder and the incrementation steps of
maxflow increases when the storage system becomes heteroge-
neous. Nonetheless, average execution time difference between
maxflow and heuristics is always less than 0.2 milliseconds per
request. On the other hand, maxflow guarantees the optimal
service time and it yields equal or smaller service time than
the heuristic based solutions. This can clearly be observed
from Figures 15(b) and 15(d). Among the heuristics, online
clearly performs the best in terms of service time and its
performance gets closer to maxflow when the number of copies

292

Performance of Retrieval Algorithms Performance of Retrieval Algorithms

maxflow - -+
onling x|
random -+

pow-of-two —&— |

0.001

maxflow - -+
online

random - ¥

pow-of-two —5—

Avg. Execution Time (msec)
Avg. Service Time (msec)

0.0001 - s
2 3 4 5 2 3 4 5

Copy Amount Copy Amount
(a) Execution Time, disk_confl (b) Service Time, disk_confl

Performance of Retrieval Algorithms
1 T T

Performance of Retrieval Algorithms
24 T T

22 et g

S

maxfiow - -+]
L oniine x|
1% random %

L pow-of-two —=—
12f e . g
10 F e g
0.0001 L L 8 L L

2 3 4 5 2 3 4 5

Copy Amount

(d) Service Time, disk_conf4

maxflow - -+
online
random -~

pow-of-two —=—

-
LY T S——

Avg. Execution Time (msec)
Avg. Service Time (msec)

Copy Amount
(c) Execution Time, disk_conf4

Fig. 15. Discrete, Exchange

increase. Since online makes the retrieval decision considering
the buckets one by one in an online fashion, probability of
making a mistake for online decreases when the number of
copies increases. Nevertheless, maxflow performs a couple of
milliseconds better than online per disk request.

These results clearly show the trade-off between service
time and execution time, especially among maxflow and online;
however, inclusion of waiting time is also expected to effect
the values of service time and execution time, as well as the
response time. Therefore, we next look at the response time
values in continuous retrieval case and observe how these
trade-offs affect the response time of disk requests.

2) Performance of Continuous Retrieval Schemes: In this
section, we evaluate the performance of the proposed continu-
ous retrieval techniques (batched, immediate-conservative, and
immediate-adaptive) using online, shortest-queue, and maxflow
retrieval algorithms. Since online and shortest-queue cannot
get any benefit from batching or adaptively rescheduling by
their nature, they are only integrated into the immediate-
conservative technique. On the other hand, maxflow is inte-
grated into all three continuous retrieval techniques (maxflow-
batched, maxflow-cons, maxflow-adp). Beside these, we also
compare the results with maxflow-baseline. maxflow-baseline
is used as a baseline comparison and it outlines what would
happen if we did not use any continuous retrieval technique.
maxflow-baseline handles the request in a discrete manner as
in Section IV-E1 by assuming the disks are idle in each case.

Figure 16 shows copy amount vs. average response time
values for the Exchange trace using the four different disk con-
figurations. Although batching has a service time advantage,
because of the waiting times introduced during the batching
process, it generally performs worse than the immediate tech-
niques. This shows that while the batching technique awaits
requests in the storage array controller, immediate techniques
can retrieve some buckets apriori by utilizing the idle disks
as explained in Example 1. Expectedly, maxflow-baseline
generally yields larger response time values compared to others
since it is not using any continuous retrieval technique. It is
also clear that the performance of shortest-queue degrades as
the system gets heterogeneous. online performs competitive

Performance of Retrieval Techniques

Performance of Retrieval Techniques

240
220
200 4
180 | 4

Avg. Response Time (msec)
Avg. Response Time (msec)

100 ; .

Copy Amount Copy Amount

Shortest-queue -+ maxflow-batched &
online * maxflow-cons =
basoling x flow-adp ©

Shortest-queue +

‘maxflow-batched &
online
baseline *

maxflow-cons =
il i flow-adp ©

(b) disk_conf2

(a) disk_confl

Performance of Retrieval Techniques Performance of Retrieval Techniques

T
f

Avg. Response Time (msec)

Avg. Response Time (msec)

Copy Amount

Copy Amount

‘maxflow-batched &
maxflow-cons =
flow-adp &

‘maxflow-batched &

shorlest-quete +
online x maxflow-cons ®
* flow-adp &

shorlest-quete +
online
b

dl fle

(¢) disk_conf3

Continuous, Exchange

(d) disk_conf4
Fig. 16.

with maxflow-cons and maxflow-adp but generally performs
slightly worse than them. For disk_conf2, performances are
very close since disk_conf2 is a homogeneous configuration
composed of high-end SSDs. In this configuration, all the disks
are very fast and request interarrival times of the Exchange
trace are larger compared to the disk retrieval times (see
Figure 12(d)). Therefore, the retrieval choice does not really
affect the response time a lot.

Figure 17 shows copy amount vs. average response time
values for the TPC-C and the TPC-E traces using one homo-
geneous and one heterogeneous disk configuration for each
trace. Most of the observations pointed out for the Exchange
trace in Figure 16 applies to the TPC-C and TPC-E traces.
One difference here is that online generally performs close
to maxflow. This happens because the number of disks in the
system are generally larger than the request size of these traces.
In such a case, even the buckets are scheduled to the disks in
an online fashion, possibility of making an error for the online
is very small if a fair declustering scheme like RDA is used
as in our case.

maxflow-cons and maxflow-adp performs generally better
than the other techniques and their performances are also
very similar to each other by maxflow-adp being slightly
better in some cases. This makes sense because maxflow-adp
allows the retrieval decision of the previous requests to be
changed for only better performance and it is expected to
help if there are unretrieved buckets from previous requests
when a new request arrives. Only in such a case maxflow-adp
can adaptively reschedule the previously scheduled buckets.
The positive effect of this rescheduling is mostly observed
for heterogeneous storage configurations like disk_conf3. Fig-
ure 18(a) shows the average response time difference between
maxflow-cons and maxflow-adp (maxflow-cons — maxflow-adp)
for different intervals of the Exchange trace. As it is clear
from the figure, adaptive technique improves average response
time of the conservative technique up to an average of 9-10
milliseconds per request. Such a difference would impact the
performance of the storage system tremendously, especially
in rush hours where the system is overloaded. Beside this,
adaptive technique does not introduce any additional execution

293

Performance of Retrieval Techniques

Performance of Retrieval Techniques

Avg. Response Time (msec)
Avg. Response Time (msec)

Copy Amount Copy Amount
maxflow-batched B

maxflow-cons ®
flow-baseling % il 5

maxflow-cons =

Shorlest-queue +
online
I maxflow-adp ©

Shortest-queus + maxflow-baiched B
online

maxflow-baseline

(a) TPC-E, disk_conf1 (b) TPC-E, disk_conf2

Performance of Retrieval Techniques Performance of Retrieval Techniques

Avg. Response Time (msec)

Avg. Response Time (msec)

Copy Amount Copy Amount

‘maxflow-baiched &
maxflow-cons #
flow-adp &

maxflow-baiched &

shorlest-queue +
maxflow-cons ®
flow-adp &

online x
baseline ¥

Shortest-quete +
online
fl flow-baseline %

(c) TPC-C, disk_conf3 (d) TPC-E, disk_conf4
TPC-C and TPC-E, Continuous Requests

Fig. 17.

time on the response time of a request when it is carefully
implemented. An important implementation detail is not to
reschedule the buckets whose remaining queue wait times are
very short such that the execution time of the rescheduling
process is larger than their remaining queue wait times. If
these buckets are not included in the rescheduling process,
no additional execution time overhead is introduced by the
adaptive retrieval since these buckets are already waiting on
the disk queues.

Performance of Adaptive vs Conservative Fairness

T 5

C4NMNWwhROON®OD

T —————
maxflow-con —a—
maxflow-adp —e—

(cons-adp) difference —+—

Squared Coef. of Variance (msec)

-
10 20 30 40 50 60 70 80 90 100
Intervals (15 minutes each)

Avg. Response Time Difference (msec.)

10 20 30 40 50 60 70 80 90 100
Intervals (15 minutes each)
(a) Avg. Response Time Difference (b) Fairness

Fig. 18. Adaptive vs Conservative, copy amount (c) = 2

Another issue that should be addressed for the adaptive
retrieval technique is possible starvation of requests because
of excessive rescheduling. Starvation issue can be eliminated
in various stages. One way is depending on the disk scheduling
algorithm and assuming that the scheduling algorithm will
handle the starvation issue. For example, usage of first-come,
first-served (FCFS) disk scheduling algorithm in the disk
queues will make sure that requests are sorted in individual
disk queues by their arrival times and this sorting will elim-
inate possible starvation. Another approach is setting up an
upper limit of rescheduling value. By this way, if a bucket
reaches this upper limit, then it cannot be rescheduled anymore
and possible starvation is eliminated. In our simulation, we
eliminated starvation problem by using the FCFS scheduling
algorithm in individual disk queues. In order to observe the
elimination of possible starvation issue in adaptive technique
experimentally, we compare the fairness of conservative and
adaptive retrieval techniques in Figure 18(b). As the metric
of this comparison, we use squared coefficient of variation
of response time (02/u?). This is a common metric used

traditionally to evaluate the fairness of disk scheduling algo-
rithms [49], [50]. Given a constant average response time,
a decrease in the coefficient of variation implies reduced
response time variance (i.e. improved starvation resistance). It
is clear from the figure that adaptive retrieval does not cause a
starvation issue; on the contrary, it is improving the starvation
resistance of conservative technique in many trace intervals.

V. CONCLUSION

In this paper, we explored efficient continuous retrieval
strategies of replicated data from multi-disk storage architec-
tures considering the heterogeneity of the disks, execution time
of the retrieval technique, and individual disk loads. We theo-
retically proved that batching multiple requests can yield lower
total service time; however, experimental results using real
world storage traces showed that retrieving the requests imme-
diately considering the disk loads is superior to batching since
batching introduces an additional waiting time and it causes
the underutilization of the idle disks in the system. As a result,
we combined the idea of batching with immediate retrieval and
proposed an adaptive retrieval strategy. Experimental results
demonstrated that proposed adaptive retrieval strategy benefits
from both the service time advantage of the batching idea by
rescheduling previous buckets combined with new request, and
the waiting time advantage of the immediate retrieval idea by
utilizing the idle disks in the system immediately. We also
showed that proposed adaptive retrieval technique is superior
to existing solutions and helps the storage system more in rush
hours when the request interarrival times decrease.

REFERENCES

V. Filks and S. Zaffos, MarketScope for Monolithic Frame-Based Disk
Arrays, http://www.gartner.com/id=1591014, Gartner Research, 2011.
A. Kros et al., Quarterly Statistics: Disk Array Storage, All Countries,
http://www.gartner.com/id=2504815, Gartner Research, June 2013.
EMC VMAX Storage System, http://www.emc.com/collateral/hardware/
specification-sheet/h6176-symmetrix- vimax- storage-system.pdf, 2011.
EMC DMX-4 Storage System, http://www.emc.com/collateral/hardware/
specification-sheet/c1166-dmx4-ss.pdf, 2010.

Hitachi Virtual Storage Platform, http://www.hds.com/products/
storage-systems/hitachi- virtual-storage- platform.html, 2012.

HP P10000 3PAR Storage Systems, http://h20195.www2.hp.com/v2/
GetPDF.aspx/4AA3-2351ENW.pdf, 2011.

Sun Storage F5100 Flash Array, http://www.oracle.com/us/043970.pdf.
Nimbus Data S-class Enterprise Flash Storage Systems, http://www.
nimbusdata.com/products/Nimbus_S-class_Datasheet.pdf, 2010.
RamSan-630 Flash Solid State Disk, http://www.ramsan.com/files/
download/212, Texas Memory Systems White Paper, August 2010.

(11
(2]

(31

[10] Violin 3000 Flash Memory Arrays, http://www.violin-memory.com/

wp-content/uploads/Violin- Datasheet-3000.pdf?d=1, 2012.

Violin 6000 Flash Memory Array, http://www.violin-memory.com/
wp-content/uploads/Violin- Datasheet-6000.pdf?d=1, 2011.

Sun Storage 7000 Unified Storage Systems Family, http://www.oracle.
com/us/products/servers-storage/039224.pdf, Oracle Datasheet, 2009.
EqualLogic PS6100XS Hybrid Storage Array, http://www.equallogic.
com/products/default.aspx?id=10653, Dell, Inc., 2011.

Zebi Hybrid Storage Array, http://tegile.biz/wp-content/uploads/2012/
01/Zebi- White-Paper-012612-Final.pdf, Tegile Systems, Inc., 2012.
Adaptec High-Performance Hybrid Arrays, http://www.adaptec.com/
nr/rdonlyres/alc72763-e3b9-45f7-b871-a490c29a9b11/0/hpha5_fb.pdf,
PMC-Sierra, Inc., 2010.

N. Altiparmak and A. S. Tosun, “Equivalent disk allocations,” IEEE
TPDS, vol. 23, no. 3, pp. 538-546, March 2012.

[11]
[12]
[13]
[14]

[15]

[16]

294

[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

[27]
[28]
[29]
[30]

[31]
[32]

[33]

[34]
[35]
[36]
[37]
[38]

[39]
[40]

[41]

[42]
[43]

[44]
[45]
[46]

[47]

[48]

[49]

[50]

J. Lee et al., “Declustering large multidimensional data sets for range
queries over heterogeneous disks,” in SSDBM 03, pp. 212-224.

H. Ferhatosmanoglu, A. S. Tosun, and A. Ramachandran, “Replicated
declustering of spatial data,” in ACM PODS’04, pp. 125-135.

C.-M. Chen and C. Cheng, “Replication and retrieval strategies of
multidimensional data on parallel disks,” in CIKM’03.

K. Frikken, “Optimal distributed declustering using replication,” in
ICDT’05, pp. 144-157.

K. Frikken et al., “Optimal parallel i/o for range queries through
replication,” in DEXA’02, pp. 669-678.

K. Y. Oktay, A. Turk, and C. Aykanat, “Selective replicated declustering
for arbitrary queries,” in Euro-Par’09, pp. 375-386.

A. Turk, K. Y. Oktay, and C. Aykanat, “Query-log aware replicated
declustering,” IEEE TPDS, vol. 24, no. 5, pp. 987-995, 2013.

A. S. Tosun, “Analysis and comparison of replicated declustering
schemes,” IEEE TPDS, vol. 18, no. 11, pp. 1578-1591, November 2007.

J. R. Santos, R. R. Muntz, and B. Neto, “Comparing random data
allocation and data striping in multimedia servers,” in SIGMETRICS 00.

R. Muntz, J. R. Santos, and S. Berson, “A parallel disk storage
system for realtime multimedia applications,” International Journal of
Intelligent Systems, vol. 13, pp. 1137-1174, 1998.

W. H. Tetzlaff and R. Flynn, Block allocation in video servers for
availability and throughput, IBM US Research Centers, 1996.

L. T. Chen and D. Rotem, “Optimal response time retrieval of replicated
data,” in ACM PODS’94, pp. 36-44.

J. Korst, “Random duplicated assignment: an alternative to striping in
video servers,” in MULTIMEDIA’97, pp. 219-226.

P. Sanders, “Asynchronous scheduling of redundant disk arrays,” IEEE
Trans. Comput., vol. 52, no. 9, pp. 1170-1184, Sep. 2003.

A. S. Tosun, “Multi-site retrieval of declustered data,” in ICDCS’08.

N. Altiparmak and A. S. Tosun, “Integrated maximum flow algorithm
for optimal response time retrieval of replicated data,” in ICPP’12.

N. Altiparmak and A. S. Tosun, “Generalized optimal response time
retrieval of replicated data from storage arrays,” ACM Transactions on
Storage, vol. 9, no. 2, pp. 5:1-5:36, Jul. 2013.

K. A. S. Abdel-Ghaffar and A. El Abbadi, “Optimal allocation of two-
dimensional data,” in /CDT’97, Delphi, Greece, pp. 409-418.

M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE TPDS, vol. 12, pp. 1094-1104, 2001.

A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling policies for an
on-demand video server with batching,” in ACM MULTIMEDIA 94.

C. N. Potts and M. Y. Kovalyov, “Scheduling with batching: a review,”
European Journal of Operational Research, vol. 120, no. 2, 2000.

C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “On optimal batching policies
for video-on-demand storage servers,” in ICMCS’96, pp. 253-258.

N. Agrawal et al., “Design tradeoffs for ssd performance,” in ATC’08.

D. Narayanan er al.,, “Everest: Scaling down peak loads through i/o
off-loading,” in OSDI’08.

D. Narayanan et al., “Migrating server storage to ssds: Analysis and
tradeoffs,” in EuroSys’09.

Storage Networking Industry Association, http://iotta.snia.org.

S. Kavalanekar et al., “Characterization of storage workload traces from
production windows servers,” in IISWC’08, pp. 119 —128.

TPC Benchmark C, http://tpc.org/tpcc/spec/tpcc_current.pdf.

TPC Benchmark E, http://tpc.org/tpce/spec/v1.12.0/TPCE-v1.12.0.pdf.
P. Sanders, S. Egner, and K. Korst, “Fast concurrent access to parallel
disks,” in 11" ACM-SIAM Symposium on Discrete Algorithms, 2000.
A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum
flow problem,” Journal of the ACM, vol. 35, pp. 921-940, 1988.

J. Cheriyan and K. Mehlhorn, “An analysis of the highest-level selection
rule in the preflow-push max-flow algorithm,” Inf. Process. Lett., vol. 69,
no. 5, pp. 239-242, Mar. 1999.

B. L. Worthington, G. R. Ganger, and Y. N. Patt, “Scheduling algorithms
for modern disk drives,” in SIGMETRICS 94, pp. 241-252.

T. J. Teorey and T. B. Pinkerton, “A comparative analysis of disk
scheduling policies,” in Comm. of the ACM, March 1972, pp. 177-184.

