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Abstract

Many applications in wireless sensor networks can ben-
efit from position information. However, existing accurate
solutions for indoor environments are costly. RF based
approaches are not suitable for some indoor environments
such as factory floors where heavy machinery can cause in-
terference. In this paper, we propose a low cost and simple
location management system using the Wii Remote Con-
troller and infrared leds. Proposed solution is motivated
by the need to find the location of a mobile robot used for
data collection in a wireless sensor network. In proposed
scheme, Wii Remote Controller is placed on the mobile
robot pointing upward and several IR leds are placed on the
ceiling. Proposed scheme uses the resources efficiently and
can cover a large area using a single Wii Remote Controller
and multiple IR leds. Proposed scheme is easy to implement
and requires minimal bandwith for location management.

1. Introduction

A wireless sensor network (WSN) consists of potentially
hundreds of sensor nodes and is deployed in an ad hoc man-
ner for collecting data from a region of interest over a pe-
riod of time. Even though the technology is new, WSNs re-
ceived an enthusiastic reception in the science community
as WSNs enable precise and fine-grain monitoring of a large
region in real-time. Some examples of successful large-
scale deployments of WSNs to date are in the context of
ecology monitoring (monitoring of micro-climate forming
in redwood forests [23]), habitat monitoring (monitoring of
nesting behavior of seabirds [17]), and military surveillance
(detection and classification of an intruder as a civilian, sol-
dier, car, or SUV [3, 4]).

∗Partially supported by US National Science Foundation (NSF) Grant
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To improve the scalability and performance of WSNs,
there has been a flurry of work on employing a mobile
node for data collection. The data mules [19] work ex-
ploit random movement of mobile node to opportunistically
collect data from a sparse WSN. Here, the nodes buffer
all their data locally, and upload the data only when the
mobile node arrives within direct communication distance.
Zebranet [14] system uses tracking collars carried by ani-
mals for wildlife tracking. Data is forwarded in a peer-to-
peer manner and redundant copies are stored in other nodes.
Shared wireless infostation model [20] uses radio tagged
whales as part of a biological information acquisition sys-
tem. Mobility of the mobile node is not controlled in these
approaches. Mobile element scheduling (MES) work [21]
considers controlled mobility of the mobile node in order
to reduce latency and serve the varying data-rates in the
WSNs effectively. The MES work shows that the problem
of planning a path for the mobile node to visit the nodes
before their buffers overflow is NP-complete. Heuristic
based simple solutions are proposed to address this prob-
lem [21, 11, 27]. Sencar [16] uses a mobile observer to col-
lect data. Area is divided into regions and the mobile node
moves in straight lines in each region. Multihop forward-
ing is used to relay packets from distant sensors to sencar.
Data salmon [7] constructs a spanning tree and moves the
mobile basestation on this tree to optimize the cost of re-
trieval. To reduce the size of the path the mobile node trav-
els, rendezvous points are used as regional collection points
and the mobile node collects the data from the rendezvous
points [26]. Mobile nodes are also used for data collection,
storage and retrieval in underwater sensor networks [24].
This work assumes a single mobile node. Multiple mobile
nodes are also proposed to improve the performance [13]
using load balancing between the mobile nodes.

Efficient use of mobile nodes require location informa-
tion. Mobile robot should know its approximate location to
follow predetermined optimal paths and make location de-
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pendent decisions. Individual sensors should also know the
location of the mobile to coordinate sleep-wake up sched-
ules and save resources. Location management schemes us-
ing GPS [9] are not suitable for indoor environments. Ex-
isting approaches include RADAR [5] which uses RF to lo-
cate and track users inside buildings. RF based schemes
use RSSI (Received Signal Strength Indicator), which is
obtained automatically with the received messages in most
sensor radios. Although RF based schemes provide the
cheapest localization technique [22], they yield very noisy
estimations, especially for indoor systems [25]. Also, the
RSSI values depend on many factors ranging from the an-
tenna orientation to the environment specifics [22]. In a fac-
tory setting, heavy machinery causes RF signal interference
impeding the accuracy of localization service based on RF
signals. To overcome limitations of RF only schemes, com-
bination of RF and ultrasound are used to provide location
information in some applications [18, 12].

In this paper, we propose a framework for indoor loca-
tion management using Wii Remote Controller (WRC) and
IR leds. WRC has a resolution of 1024×768 and can detect
each IR led as one pixel having Wii.x and Wii.y coordinates.
Each WRC has capability of broadcasting the coordinates
through bluetooth. By carefully placing IR leds on the ceil-
ing, we can compute the location of a mobile robot using
WRC.

The rest of the paper is organized as follows. Proposed
tracking system is described in section 2. We show how
to find the location of the mobile element in section 3. In
section 4, rotation of the mobile element is discussed. We
describe simulation results in section 5 and conclude with
section 6.

2. Proposed Tracking System

WRC is placed on the mobile device in an upright po-
sition pointing to the ceiling with the tip of its IR camera
sensor. IR light sources are placed above a certain distance
from the floor, pointing to the floor as shown in Figure 1.
First, we consider the robot moving only vertically and hor-
izontally, without changing its orientation and then we con-
sider rotations of the robot. To expand the coverage area
to arbitrary sized grids, it is enough to increase the number
of IR light sources used. No additional WRCs are needed.
Therefore, the cost is quite low since the cost of one WRC
corresponds to the cost of nearly 200 IR light sources. If
a fixed WRC was placed on the ceiling and one IR sensor
was placed on the mobile robot, multiple WRCs would be
needed to expand the coverage area resulting in a costly so-
lution.

WRC is Nintendo Wii game console’s controller, re-
leased in November 2006. WRC has an Infrared(IR) cam-
era, which provides high resolution and high speed tracking
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Figure 1. Tracking System

of up to four IR light sources at the same time. The camera
provides location data with a resolution of 1024×768 pixels
with a 100Hz refresh rate, and a 45 degree horizontal field
of view [15]. Besides the IR camera, it has a wireless blue-
tooth connectivity as well, which makes it a perfect tracking
device being compatible with PC. WRC has a suggested re-
tail price of US$40.

The IR leds we used are TSAL6400 high power Infrared
emitting diodes, with a peak wavelength of 940 nanometer,
radiant power of 35 milliwatt and half intensity angle of
±25◦. It costs about US$0.20.

We use iRobot Create and Command Module [1], which
is a programmable robot, as our mobile device. A Tmote
Sky sensor [2] is connected to the iRobot Command Mod-
ule(ICM) using serial communication. The connection be-
tween the sensor and robot can be seen in Figure 2.

Figure 2. The configuration between iRobot
and Tmote Sky sensor.

In our system, the data required to compute the location
of the mobile element is sent via the bluetooth interface of
WRC to the PC(base station) which in turn processes the
data, and broadcasts the location of the mobile robot. In ad-
dition to providing the mobile robot with its location, this al-
lows other sensors to learn the position of the mobile robot.
Other sensors can switch to the sleep mode and save energy
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if the mobile robot is far away from them. When the mobile
node is close, they can wake up and transmit the collected
data to the mobile robot. In case the static sensors can not
receive the broadcast messages from the PC, the Tmote Sky
sensor on the robot can also broadcast this information en-
larging the communication area.

3. Finding Location Via Local Information

Our goal is to find the location of the mobile robot us-
ing the positions of IR leds detected by the WRC. The area
covered is large and the WRC is able to see only a fraction
of the area and detect only the IR leds in this local area.
The size of the observation window of WRC depends on
the height. The WRC should be able to determine its posi-
tion using the IR leds in its observation window. One chal-
lenge is that IR camera cannot differentiate IR light sources.
There are no unique IDs corresponding to IR light sources.
In this setting, we have to differentiate these IR leds in some
way in order to understand where our mobile robot is. One
way of solving this problem is irregular placement of IR
light sources. Using relative position of each static IR led
with respect to each other, we can compare all the vectors
between each pair of static IR leds and differentiate these
pairs. After differentiating them, it is easy to find the physi-
cal location of the mobile robot. An example of an irregular
placement of IR leds is given in Figure 3. The vectors we
consider are {(1,2); (1,3); ... ; (4,5)} where a vector is rep-
resented as (startLed, endLed). The corresponding slope
and length pairs of these vectors are {(-3,
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5)} where a pair is represented as
(slope, length), and none of the IR led pairs has the same
slope and length. Assuming the thick rectangle in the fig-
ure is a window that the WRC sees, then the location of the
mobile element is figured out by examining the IR leds in
that window. The slope-length pairs in WRC’s window is
computed. In the example, the WRC sees two IR leds, and
the slope-length pair is computed as (-1,

√
2). Since all the

slope-length pairs are unique, the corresponding vector, (3,
4) is found. Once the vector is found, it is trivial to find out
the location of the mobile element because we know the lo-
cations of the IR leds that constitute the found vector. We
talk about the details later in this section. Costas arrays are
one way of providing this irregular placement and they are
explained next.

3.1. Costas Arrays

In order to position static IR leds, we make use of Costas
arrays, firstly defined in [10] and used in [6]. In an N ×
N Costas array, there is exactly one dot in each row and
column and none of the dot pairs have the same slope and
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Figure 3. Irregular placement of IR leds

length. In other words, there are distinct vector differences
between all pairs of dots. Figure 4(a) is an example of a
Costas array of order 27.

Let us assume that the 27× 27 grid in Figure 4(a) is the
area that we should cover for tracking, which is our global
area. At this point, since Wii can see a 4 × 3 (1024× 768)
rectangle, which is our local area; we should choose a win-
dow with a size of 4 × 3 or its integer multiples. In order
to find the physical position of mobile robot, we need at
least two IR leds in our local area since we need at least
one pair of IR led to differantiate the leds using the unique
vector difference between them. The window size that pro-
vides this constraint is generally very large. Therefore, it is
reasonable to start with a window size that covers at least
1 IR led in any place of our tracking area. In our specific
example, 12× 9 window contains at least 1 but generally 2
to 4 static IR sources at any place of the whole grid. This
window size can be found by using the matrix structure that
we will explain later. The next step to be taken is first to
remove unnecessary static IR leds, then to add some more
leds in order to satisfy the condition of having at least two
leds in local area. Figure 4(b) demonstates the final state
of our system, with a window size of 12 × 9 and with 16
static IR leds in a 27×27 grid. This is probably not an opti-
mal solution for our problem, however; optimal solution is
NP-complete as follows.

(a) A Costas array of order 27.

*

*
1

2

3
WRC

(b) Our modified system

Figure 4. Costas Array Based Tracking
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3.2. NP-Completeness of Wii Coverage
Problem

Definition 1. Wii Coverage(WC) Problem
Given N1 ×N2 array with points, find minimum number of
leds that satisfy the condition that eachN3×N4 subarray of
N1×N2 array has at least k leds in it, where k is a positive
integer.

Definition 2. Hitting Set
Given a collection C of subsets of a finite set S, a positive
integer K ≤ |S|. Is there a subset S′ ⊆ S with |S′| ≤ K

such that S′ contains at least one element from each subset
in C? This problem is defined as hitting set problem and it
is NP-complete [8].

Theorem 1. The WC problem is NP-complete.

Proof. Hitting Set is polynomial-time reducible to Wii Cov-
erage Problem. Create the collection C using all the N3 ×
N4 windows. Having an IR led in each window is finding
Hitting set in this collection.

3.3. Matrix Structure

Since the Wii Coverage Problem is NP-Complete, first,
we need to verify the correctness of a given solution to the
problem. Let’s assume that our example Costas Array is
a solution to our problem. In order to verify that whether
this solution is correct or not, we build the following matrix
structure.
The basis for the structure comes from the set theory. In
Figure 5, we have the sets A1, A2, A3, A4 each covers a
specific area of the whole rectangle. Then, the number of
points in the area, A4 is found by the following equation.

A4 = (A1+A2+A3+A4)−[(A1+A2)+(A1+A3)−A1] (1)

The first step in finding the number of points in a spec-
ified rectangle is to create and initialize a matrix, Matrix-
Points, with the same size as the Costas Array’s size (the
same number of rows and columns). The existence of a
point in the costas array is represented by a 1, and nonex-
istence of a point is represented by a 0 in the matrix. The
goal is to determine how many points there are in a X × Y

window area at a given time. We need an auxiliary matrix,
M, to achieve the goal. Each entry of this matrix is set with
the number of points in the rectangle defined between (0,0)
and the coordinates of the related entry. Lines 1-4 in Algo-
rithm 1 show how to build the auxiliary matrix. Once we
constructed the auxiliary matrix, M, we can determine the
number of pairs in a specific window. The equation 2 finds
the number of points in a window of which the right bottom

coordinates are i, j; width is X; and height is Y using the
matrix M.

A4 = M(i, j)− [M(i, j−Y )+M(i−X, j)]+M(i−X, j−Y )
(2)

Figure 5 shows an example array and WRC window area
A4 inside of our array. Finally, we derive the algorithm 1
that verifies whether all X × Y windows contain at least k
number of points(IR leds) or not. The complexity of this
algorithm is O(mn) where m, and n are the dimensions of
the given matrix.

Algorithm 1 Verify(MatrixPoints, k, X, Y, RowSize,
ColumnSize)

1: M = MatrixPoints
2: for i = 1 to RowSize do
3: for j = 1 to ColumnSize do
4: M [i, j]+ = M [i−1, j]+M [i, j−1]−M [i−1, j−1]
5: for i = X to RowSize do
6: for j = Y to ColumnSize do
7: if M [i, j]−M [i, j−Y ]−M [i−X, j]+M [i−X, j−

Y ] < k then
8: return NOT VERIFIED
9: return VERIFIED

For the array in Figure 5 for example, we need to create
a 9 × 9 matrix and fill each entry of this matrix with the
number of points in the rectangle defined between (0,0) and
the coordinates of the related entry. For example, number
of points in the area of A1 is kept in the 3rd row and 4th
column of our matrix, M(3, 4). By using our matrix, we
can easily check the number of points in our WRC window
as we show in equations 3 and 4.

A4 = (A1+A2+A3+A4)− [(A1+A2)+(A1+A3)−A1]
(3)

A4 = M(6, 8)− [M(3, 8) + M(6, 4)−M(3, 4)] (4)

.

.
.
.

X

Y

(i,j)

A1 A2

A3 A4

Figure 5. Finding number of points in WRC
window.
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3.4. Modifying Costas Array

Our system needs to have at least two IR leds in a 12× 9
window. However, in costas arrays, some windows may
contain more than two, and some may contain only one IR
led. Therefore, we represent two algorithms for modifying
a chosen costas array: removing IR leds for windows having
more than two leds, and adding IR leds for windows which
contains one IR led. The sequence of applying these algo-
rithms differs depending on the costas array. This sequence
is discussed later in this section. In the removing IR leds
algorithm, we remove the points until we guarantee at least
two IR leds in a 12× 9 window. Our heuristic is removing
the IR leds which are closer to each other, algorithm 2, line
3. When removing a point, we know the number of IR leds
in any window thanks to the matrix structure. Our attention
is on the 12× 9 windows. Algorithm 2 shows the steps.

Algorithm 2 Removing IR leds
1: Construct the matrix structure
2: Compute the distances between points forming Pairs Array
3: Sort the Pairs Array in ascending order, using distances as sort

keys
// provides starting with the points which are close to each
other

4: for each pair in the Pairs Array do
5: Select the point which maximizes the number of distinct

distances between points after removing
6: if removing the selected point does not violate the con-

straint that every 12×9 window contains at least two points
then

7: remove the selected point
8: update the matrix structure
9: else if removing the other point in the pair does not violate

the constraint that every 12 × 9 window contains at least
two points then

10: remove this point
11: update the matrix structure

Since we want as many distinct distance values as possi-
ble, we apply a second heuristic, algorithm 2, line 5. After
determining the closest pair of points, first we select the
one which maximizes the number of distinct distance val-
ues among all points when it is removed. This point will be
our first candidate to remove. If our constraint is violated,
we try to remove the other point in the pair. If the constraint
still does not let the removal of this point, we continue with
the next pair of points where the distance between the points
is the next smallest one.

In algorithm 2, the initialization phase, lines 1 - 3, runs
in O(s2log(s)) where s is the number of IR leds (or the
number of points in the matrix structure). The rest of the
algorithm runs in O(s3nm) where n, and m are the dimen-
sions of the matrix. The total run-time of algorithm 2 is
O(s2log(s)) + O(s3nm) = O(s3nm).

Given the 12× 9 windows which have 1 IR led in them,
we have to guarantee that those windows contain at least 2
IR leds by adding IR leds. Our example Costas Array has
six such windows. If we can find a spot in the intersection of
all these windows, we guarantee at least two IR leds in every
12×9 windows. However, we have the unique distance and
slope constraint between the points. Therefore, we may not
find a suitable spot in the intersection of all these windows
and we go with a greedy approach. Algorithm 3 demon-
strates the steps to be taken. In the algorithm, a window
is represented as a pair which holds the coordinates of its
bottom right corner.

Algorithm 3 Adding IR leds
1: CWS = Ø// candidate windows set
2: W = set of windows having 1 IR led // using matrix structure
3: while W �=Ø do
4: Sort the windows in W by y-coordinates
5: Form a 2D range: [maximum y-coordinate; maximum y-

coordinate − window height]
6: Add the windows in the range to CWS
7: Sort the windows in CWS by x-coordinates
8: Update the 2D range forming a rectangle area: [minimum

x-coordinate; minimum x-coordinate + window width]
9: Update CWS according to the 2D range

10: while 1 do
11: if CWS.size > 1 then
12: Find the intersection of the windows in CWS
13: Find a valid IR location that does not violate the

distance-slope constraint for the intersection
14: if found then
15: add the IR led
16: update W // using matrix structure
17: break
18: else
19: update the CWS by removing the farthest window

// farthest window is the right-most window in
CWS

20: else if CWS.size == 1 then
21: Find a valid location that does not violate the

distance-slope constraint for the window in CWS
22: if found then
23: add the IR led
24: update W // using matrix structure
25: break
26: else
27: remove the window from CWS
28: else
29: exit

Algorithm 3 runs in O(|W |2log(|W |)) +

O(|CWS|2|W |s) time where s is the number of points in
the array, |W | is the number of windows containing one IR
led, and |CWS| is the number of candidate windows.

The sequence of applying algorithms 2 and 3 depends
on the alignment of the costas array which is used. An IR
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(a) Initial with 27 points. (b) After algorithm 2: 16 points (c) After algorithm 3: 18 points (d) Final system with 16 points.

Figure 6. Modifying Costas Array

led cannot be added to a particular window containing one
IR led in it, unless the slope-distance constraint allows. In
our specific example, trying to add IR leds for the windows
with one IR led as a first step does not work because of the
slope-distance constraint. Therefore, we first run the remov-
ing leds algorithm. The result of this algorithm applied on
the original costs array, figure 6(a), is shown in figure 6(b).
Now, we turn back to the adding leds algorithm, because
there are windows which contain just one IR led. This time
IR leds are added preserving the slope-distance constraint:
two IR leds are added to guarantee at least two IR leds in
spots, (10, 11) and (17,13), figure 6(c). Finally, if we run
the removing IR leds algorithm again, the IR leds located at
(25, 10) and (9, 13) are removed. In this way, we guarantee
at least two IR leds in each and every 12× 9 windows pre-
serving slope-distance constraint by using only sixteen IR
leds, figure 6(d). Even our example costas array having 27
IR leds could not achieve this.

It is possible to have some windows with less than 2 IR
leds depending on the costas array we started as a result
of slope-distance constraint. In this case, the mobile robot
solves the problem by keeping its previous location and di-
rection. After passing a few windows, the mobile runs into
a window which contains at least two IR leds in it. Now, the
mobile robot validates its location by using IR leds again.

3.5. Handling the Tracking Area

We work with small costas arrays. However, global
area will have much larger resolution. Following approach
shows how to map the small costas array to the global area
while meeting the desired number of IR leds in each win-
dow.

1. Since we know the size of coverage area that we
have to cover, firstly, we should find the ratio of
( total coverage area

one WRC′s coverage area
) in order to decide about the

amount of static IR leds we are required. Let us say
we found t after division, and in the coverage area of

WRC, there should be about p number of static IR leds.
Now, we roughly know that t × p number of static IR
leds are required.

2. As a second step, since we know the amount of static
IR leds required, we can start from a costas array
slightly bigger than the number of static IR leds re-
quired, and we can drop or add some points as neces-
sary by following Algorithms 2 and 3.

3. Now, we have a small array with the required number
of points in it and unique vector property; however, we
have to map it into a bigger array until we fit our win-
dow size to 1024× 768. By this way, each location of
our array will represent a pixel. Assume that A is our
M ×M small array and B is our N ×N bigger array,
where N = k ×M and k is a positive integer. If we
map A into B by following Algorithm 4, B preserves
the property of A that there are still distinct vector dif-
ferences between all pairs of dots. Figure 7 shows an
example of mapping a 3 × 3 costas array into a 9 × 9
array.

. .

.
.

.
.

A

B

Figure 7. Mapping arrays.
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Algorithm 4 Mapping Costas Array (A,B,M ,k)
1: Initialize B to all 0′s

2: for i = 1 to M do
3: for j = 1 to M do
4: if A[i, j] == 1 then
5: B[((i− 1)× k + 1),((j − 1)× k + 1)] = 1

3.6. Matching Wii and Physical Coordi-
nates

In order to match Wii and physical coordinates, we use
the properties of our tracking system. First of all, as it is
mentioned, we know the global physical coordinates of our
static IR leds. Secondly, no two of the

(
16
2

)
elements have

the same slope and length. By using these properties, we
can create a table-based data structure such that it has a ta-
ble with index of unique distances among any two static IR
leds. Since there may be some equal distances for some
pairs of static IR leds, each entry table[i] is a pointer to
a linked list where different slope values and the static IR
led pair information are kept. By using this table, we can
distinguish each static IR led and find the global physical
coordinates of mobile WRC as we show in the following
example.

Let us define that the area we have to cover is shown in
Figure 4(b) and the area that WRC can see is defined as the
upper window shown in that figure. WRC is in the middle of
its coverage area and Wii coordinates of WRC is (512,384)
since our window size is 1024 x 768. Our purpose is to
find the global physical coordinates of WRC, which is also
the location of the mobile robot. For now, we know that
there are three IR light sources in the coverage of WRC and
therefore, we also know their Wii coordinates; however, we
do not have any idea about their global physical coordinates.
In order to find their global physical coordinates, we use
our data structure which we have created before. For three
IR light sources, there are 3 different pairs, and for each
pair, either the distance among them or the slope of the
vector that joins them are different thanks to the property of
Costas arrays. For each pair, by looking up our table using
the distance value between leds as an index, we can learn
the global physical coordinates of these led pairs. For this
example, Wii and global physical coordinates of each static
IR led together with WRC are given in the following table;

Wii Co. Global Physical Co.
Led1 (128,469) (4.5,11.5)
Led2 (384,128) (7.5,7.5)
Led3 (554,384) (9.5,10.5)
WRC (512,384) ?

Since WRC is in the middle of our window and window
size is pre-defined, we know the local physical coordinate

of WRC, which is (6,4.5). For now, we know the Wii coor-
dinates of WRC, Wii coordinates of IR leds, and the local
physical coordinates of WRC. By using Wii coordinates and
direct proportion, we can find the local physical coordinates
of the IR leds, too. After finding all the local physical coor-
dinates, by simply subtracting the local physical coordinate
from the global one that we found using our table structure
for any of the static IR led, we can find the value difference
between the local and global physical coordinates for that
window, which is found as (3,6) in our example. Finally, it
is possible to find the global physical coordinate of WRC
by simply adding that constant value difference to its local
physical coordinate and (9,10.5) is found as a result of this
addition.

4. Rotations of Mobile Device

If the mobile device is rotated as in Figure 4(b), two
problems arise. First of all, it may not be always possible to
guarantee at least two static IR leds in the local area. Sec-
ondly, we will not be able to use slope information, which
will cause a problem in differentiation of static IR leds if
there are more than 2 leds in the local area and there is no
unique distance between any of the pairs.
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Figure 8. Finding the maximum 4k × 3k axis
aligned rectangle in ABCD.

First of all, we deal with guaranteeing at least two static
IR leds in the local area. When a window of size 4m× 3m

is rotated it will have an axis aligned 4k × 3k window in it.
If we can guarantee two IR sensors in this 4k × 3k window
then we can gurantee two IR sensors in rotated 4m × 3m

window. We compute the maximum 4k × 3k axis aligned
rectangle area inside the big rotated 4m × 3m rectangle
for a given rotation angle α as shown in Figure 8. The ra-
tio of area of axis aligned rectangle to rotated rectangle is
( 3
4sin(α)+3cos(α) )

2. The value of alpha that minimizes this

is α = 53◦ and the area ratio is 9
25 , which means that the
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smallest axis aligned 4k×3k rectangle is 36% of the bigger
one. If our window size is 1024×768, we have to guarantee
2 static IR leds in every 614×460 axis aligned area to make
our system work in rotations as well.

Now lets consider what happens if distance information
suffice for location computation. Figure 9 shows the fre-
quencies of different distance values of each led pair in the
global window for Figure 4(b) . Maximum frequency is 5
and more than 3 is quiet rare, which means not having a
unique distance pair is a low probability. Besides, in a large
number of cases, more than two IR sensors will be in the
window resulting in at least 3 pairs. If a pair does not pro-
duce a unique distance another pair can be used. If there are
less than 3 leds in the local window and the distance value
is not unique, the locations of pairs in the previous window
can be kept and distinct distance pairs can be found. By
making the calculation for the nearest previous window, lo-
cation of the WRC can be found.
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5. Simulation Results

In this section, we evaluate the performance of our sys-
tem using simulation. We simulated our system in a java
program using the tacking area and led locations in Fig-
ure 4(b). In order to convert the costas array in Figure 4(a)
to Figure 4(b), we first implemented the Algorithm 1, Al-
gorithm 2, Algorithm 3 and Algorithm 4. After finding the
costas array that satisfies our minimum requirements shown
in Figure 4(b), we filled a 2-dimensional array according to
the values of costas array we found.

In the simulation, mobile robot picks a random destina-
tion inside our 2 dimensional array, turns and moves to-
wards that destination by calculating its location in every
window. Once it reaches that destination, another destina-
tion is picked. The path that mobile robot follows is given
in Figure 10(a). Figure 10(a) corresponds to both the actual
and the calculated path since it is guaranteed that there will

be at least 2 leds in each and every window using our ro-
tation scheme. Actual number of leds in each window on
the path is plotted in Figure 10(b). According to simula-
tion results, location of mobile device is calcuated in every
window that robot visits, which validates the practicality of
proposed scheme.

6. Conclusion

Many applications in wireless sensor networks can ben-
efit from position information. However, existing solutions
for indoor environments are costly. We propose a low cost
and simple location management system using the Wii Re-
mote and infrared leds. In proposed scheme Wii Remote is
placed on the mobile robot and multiple infrared leds are
placed on the ceiling according to a costas array based pat-
tern. Mobile robot finds its current position using the in-
frared leds in its current window. The relative position of
infrared leds with respect to each other is used to find the
global position. Proposed scheme can handle rotations and
can compute current location of robot very efficiently using
the distance between detected IR leds.
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