
Approximating the Number of Active Nodes Behind

a NAT Device

Ali Tekeoglu, Nihat Altiparmak, Ali Şaman Tosun

Department of Computer Science

University of Texas at San Antonio

San Antonio, TX, 78249

Email: {tekeoglu,naltipar,tosun}@cs.utsa.edu

Abstract—Network Address Translation (NAT) is used for
various reasons on the Internet and hides the IP address
and number of nodes behind the NAT device. Although many
applications benefit from the knowledge of number of active
nodes behind a NAT device, existing schemes are limited. In
this paper, we use TCP timestamp option to count the number
of active nodes. Timestamp option includes current timestamp
of the machine in the TCP packet. We propose an efficient
scheme that counts the number of machines using clustering of
timestamps. We use least-squares line fit of timestamp values and
convex hulls to efficiently maintain the crucial information about
existing clusters. Proposed scheme is online and requires minimal
resources. We have investigated various aspects of the scheme to
improve its performance. Using a developed tool to send packets,
we have observed that the proposed scheme approximates the
number of machines that send more than threshold number of
packets well. Real experiments validate the proposed scheme.

I. INTRODUCTION

NAT (Network Address Translation) [15] [14] [9] is the

translation of an IP address used within one network to a

different IP address known within another network. Although

any machine that implements a NAT software can behave as

a NAT device, it is generally implemented in routers. When a

packet comes in to a NAT device, its ”Destination IP” field is

rewritten prior to forwarding it to a host behind NAT machine.

The NAT software will keep track of this translation in a built-

in table, and when the host sends a reply, it will translate back

the other way.

Counting or approximating the number of active hosts

behind a NAT device is important for many reasons. First

of all, an ISP may want to know the number of computers

connected to the Internet using a single IP address. Secondly,

systems that need to grant certain privileges depending on

the IP address, might need to know the exact number of

clients using their services over that IP address. For instance,

our starting point was monitoring the requests to streaming

servers. A single client can overwhelm a streaming server by

opening large number of RTSP connections. We can monitor

the number of connections for each machine easily and place

restrictions. However, nodes behind a NAT require special

treatment since all of them appear to have the same IP address.

Partially Supported by US National Science Foundation (NSF) Grants CCF-
0702728, CNS-0855247

Thus, the limits placed on NAT devices should be based on

the number of active nodes behind a NAT device.

II. RELATED WORK

Recently, several papers on how to detect and approximately

count the number of hosts behind a NAT device are published.

In [2] and [7], IP header’s ID field is used to differentiate

hosts. This method works if the ID field is used as a simple

counter as in Windows; however, most of the OSes do not

implement the ID field as a counter. For example, Linux

uses constant 0 and OpenBSD uses a random number for ID

Field. Method presented in [6] relies on the TCP timestamp

option. They present a simple way to compute the number of

hosts behind a NAT, however their work does not include any

experimental results nor do they evaluate the correctness of

their methods. They try to find the ’number of increments per

second’ for each different machine and represent timestamp

as a linear function; timestamp = numinbysec ∗ sec +
initialT imestamp. The line equations found are kept and

described as a different machine. Their method to find the

numinbysec is not robust and they rely on the line equation

they formed using only the initial two packets; however, it is

not realistic in a real network environment. In [11] authors

presented a novel way to fingerprint devices using clock

skews. They basically capture packets from the suspected

machine and extract time dependent information from TCP

Timestamp Options field and calculate unique clock skew for

each device. They claim that one can use their clock skew

detection methods to count the number of devices behind a

NAT. However, their suggested technique works offline on

packet traces and they did not provide neither implementation

nor experimental results supporting their approach. Clock skew

idea is expanded into a wireless setting in [8] to identify NAT

devices in Wireless Sensor Networks. In [12] authors make

use of IP-ID fields to detect subscribers using NAT devices

in wireless networks. Another methodology is described in

the following papers [17], [3], [5] and [4], in which authors

utilized application layer information to discover NAT devices.

They assume that instant messaging is one of the most popular

softwares so they make use of instant messaging network

packets to detect a NAT device. Machine learning techniques

are used in [16]. They put the packets of suspected device

through several analyzers. Each analyzer tries to determine

U.S. Government work not protected by U.S. copyright

whether packets originate from users behind a NAT de-

vice. Analyzers are implemented making use of previously

mentioned methods including IP-ID field, TCP Timestamps,

Application Layer Information and Clock Skews. We present

a solution to this problem using another approach which in

turn requires less computational and spatial overhead than the

other methods mentioned above. We support our idea with

the implementation of the concept and provide experimental

results for evaluation.

In this paper, we use clustering of timestamps to count

the number of machines behind a NAT device. The rest of

the paper is organized as follows: In Section III we give

background information about the TCP timestamp option.

Proposed scheme is explained in Section IV and experimental

results are given in Section V. We conclude our paper with

Section VI.

III. BACKGROUND

A. Timestamp Option Field on TCP Header

Timestamp is a TCP option defined in RFC1323 [10], which

carries two four-byte timestamp fields; the Timestamp Value

field (TSval) and the Timestamp Echo Reply field (TSecr).

TSval contains the current value of the timestamp clock of

the TCP stack sending the option. When TSecr is not valid,

its value must be zero. TSecr echos a timestamp value in

the TSval field of a packet that was received from a remote

machine at the other end of the TCP connection. TSecr is only

valid if the ACK bit is set in the TCP header. Timestamps are

created to be used for two distinct mechanisms: round trip time

measurement and protect against wrapped sequences. A TCP

stack may send the Timestamp option (TSopt) in an initial

<SYN> segment and may send a TSopt in other segments

only if it received a TSopt in the initial <SYN> segment for

the connection.

B. Timestamps in Different Operating Systems

Different operating systems increment their timestamp clock

in different periods. Linux started to support timestamp with

kernel 2.1.9 and the initial value of timestamp is set to 0

when the system boots up. TSval in Linux is incremented

every 10 milliseconds. Windows supports the TCP timestamp

option starting with Windows 2000. TSval in Windows is 0

during the 3-way handshake but after the syn/ack handshake

is complete, TSval is incremented every 100ms starting from

an initial random number. Solaris supports timestamp starting

from Solaris 2.5 with a frequency of 100 ticks/second. MacOS

and OpenBSD also implement this option in a similar way as

the above operating systems.

Since timestamps are incremented regularly with respect to

time, time versus timestamp plots look like linear lines as

shown in Figure 1. Each linear line in this plot, actually,

corresponds to a separate machine. Two different machines

would have the exact same line only in the unlikely case that

their timestamps start from the same value at the same time

and their OSes would have the same increment frequency.

Since measurement is done at a different node than the one

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 150000 300000 450000 600000 750000

T
im

e
s
ta

m
p
 V

a
lu

e
s

Time (seconds)

Timestamps used by machines behind NAT

(ubuntu1)
(ubuntu2)
(winXP1)
(ubuntu3)
(ubuntu4)
(ubuntu5)
(ubuntu6)

Fig. 1. Time behaviour of Timestamps

which generates the timestamp, there is some variation caused

by network latency. We use these time vs timestamp graphs

to count the number of distinct machines. Slope of Windows

and Ubuntu machines are different as shown in the Figure 1

and a rebooted machine starts with a random timestamp value

in the case of Windows or starts from 0 in case of a Linux

machine.

 0.1

 1

 10

 100

 1000

 150000 300000 450000 600000 750000

E
p
s
ilo

n
V

a
lu

e
s

Time (seconds)

Change of Epsilon by Time

(ubuntu1)
(ubuntu2)
(winXP1)
(ubuntu3)
(ubuntu4)
(ubuntu5)

Fig. 2. Error from Line Fit

Due to delays and errors in measurements, time versus

timestamp is not a linear line. Errors from least square line

fit are shown in Figure 2 for the machines in Figure 1. Error

or epsilon value, is defined as the maximum vertical distance

of packets in the convex hull to the fitted line at the time

a new packet is received. As shown in the figure Windows

machine results in higher error than Ubuntu machines. Error

values are proportional to the network congestion and they

gradually increase during a long trace period, for instance the

trace plotted in Figure 2 is taken over a week.

IV. PROPOSED SCHEME

Our proposed scheme works by clustering timestamps of

received packets into lines using least-squares line fit. It

maintains convex hull of points to determine the quality of

the clusters and to find the maximum distance to the lines.

In order to improve performance we sort the lines according

to time and reorganize them if the sort order changes. Last

component of the approach is a merge operation that merges

clusters if they are very close to each other. We next describe

these pieces in detail and finally we provide our algorithm.

A. Timestamp Property

A

C

F B

D

Timestamp

Time

Fig. 3. Timestamp Property

Timestamp property requires that if two packets are from

the same machine then the one with higher time value should

have a larger timestamp. Consider Figure 3 for an example. In

this figure packets A and B satistify the timestamp property.

PacketsD and A satisfy the property as well. However, neither

A and C nor F and A satisfy the timestamp property. We

make use of this property in proposed scheme when forming

clusters, adding points to the clusters and merging clusters.

B. Least-squares Line Fit

In order to fit the data points ((Xi,Yi) = (time, TSval))

into a straight line, we used linear least squares fitting method.

The reason we are using this method is that it is calculated

on the fly with a few fast operations. Using linear algebra, we

can find the values of m and b, which gives us the equation

of the best fitting line; y = mx+ b.

Using this approach, we can update the best fitting line

and threshold value on the fly while we capture new packets.

Individual packet information need not be stored. The compu-

tation can be done in an efficient way using limited space. We

maintain
∑

(Xi)
2,

∑
Xi,

∑
Yi,

∑
(Xi ∗ Yi) and i for each

cluster. When new packets are received, these variables are

updated based on the new packet (Xi, Yi). This approach is

computationally efficient since it just requires a few additional

calculations to update the best fitting line and the threshold

value.

C. Convex Hull

We used Convex Hull data structure to maintain boundary

information about each cluster. Its use let us store minimal

information. Instead of storing all points, convex hull contains

the outer boundary points for each cluster. Convex hull of a

set S is the smallest convex set that contains S.

Convex hull offers multiple advantages for our purpose.

First, a small set of points are on the convex hull and they

can easily be stored. In addition, using convex hull, maximum

distance to the line can be computed easily since maximum

distance from a data point to a line occurs at one of the points

on the convex hull. Thus, to compute the maximum distance

from a point set S to a dynamic line L, it suffices to store the

convex hull CH(S) of the point set S.

Only a small number of points end up being in the convex

hull and this reduces the space requirement to compute the

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 150000 300000 450000 600000 750000

#
o

fP
o

in
ts

Time (seconds)

#of Points In Each Convex Hull

(ubuntu1)
(ubuntu2)
(winXP1)
(ubuntu3)
(ubuntu4)
(ubuntu5)
(ubuntu6)

Fig. 4. Number of Points in Convex Hull

maximal distance. For the trace given in Figure 1 the number

of points on the convex hull is given in Figure 4. Number of

points on convex hull for Ubuntu machines is less than 10 and

typically 3-6. For the single Windows machine we have the

number of points on the convex hull goes as high as 22 and

typically less than 15.

D. Line Sorting

��
��
��
��

�
�
�
�

��

�
�
�
�

����

��
��
��
��

l1
l2
l3
l4

y0

y1

y2
y3

t0 t1 t2

Fig. 5. Line Sorting

When a new packet is received, it needs to be compared

with the existing clusters/lines in the system to find the best

fitting line. This operation costs O(N) if brute-force scheme

is used. It is possible to reduce the complexity to O(logN)
by sorting at a specific time. However, the sort order may

change since lines have different slopes and can intersect each

other. An example is given in Figure 5. At time t0 the order

of corresponding points are line3, line4, line1, line2. At time

t1; line1 and line2 intersect and the order changes after this

point. The way we handle this is based on maintaining the

closest intersection point. Lines are sorted at current time value

and closest intersection point of consecutive line intersections

is maintained. Closest intersection point can be computed in

O(N) time if the lines are sorted and the sort order remains

the same until the closest intersection point.

When new clusters are formed, new lines are added to

the existing set of lines. We need a mechanism to find the

closest line in this dynamic setting. Above scheme can easily

be extended to include new lines. Consider Figure 6 for an

example. A new line shown with dots is added. We can find

its position at time t0 and add it in its proper location. We also

need to update closest intersection time since it can be closer

than the previous value as shown in the Figure 6. The only

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

����

�
�
�
�

��
��
��
��

�
�
�
�

l1
l2
l3
l4

lnew

y0

y1

y2
y3

t0 t
′

t1 t
′′

t2

Fig. 6. Line Sorting with new line

intersections that need to be considered are the intersections

of new line with the line above it and with the line below it.

In this example, intersection of new line with line 4, which is

above it, reduces the closest intersection point to time t′ from
t1.

Above discussion assumes that the lines are static once they

are added. In reality, we update the lines as new points are

added to the cluster. When a line is updated we need to find

its intersection with the line above it and with the line below

it and update the closest intersection point if necessary. This

results in constant amount of work independent of the number

of lines.

E. Merging Clusters

Based on the value of parameters used, sometimes packets

for a given machine are split into multiple clusters/lines.

Our approach is to detect these cases and merge the two

clusters/lines. We use least square line fit for the set of points

and maintain only the points on the convex hull for each

cluster. When the clusters are merged, least square line fit

and the convex hull needs to be updated to reflect the merge

operation. To find the least squares line fit online we maintain∑
(Xi)

2,
∑

Xi,
∑

Yi,
∑

(Xi ∗ Yi) and i for each cluster. By

combining the values for two separate clusters we can find the

least squares fit for the combined cluster. Constructing convex

hull is easy as well. Convex hull of the union of two sets

is equal to the convex hull of the union of the convex hulls

of two subsets. These two properties make merge operation

accurate as if all the points are maintained.

Before merging two clusters, we first check whether the two

clusters logically belong to the same machine. We use times-

tamp property during the merge operation as well. Consider

two clusters C1 and C2 and let Hi and Li denote the high and

low points of cluster i. If time of L1 is larger than the time of

H2 then timestamp of L1 should be larger than timestamp of

H2 as well. Similarly, If time of L2 is larger than the time of

H1 then timestamp of L2 should be larger than timestamp of

H1 as well. If these two properties are true then we call the

clusters mergable.

Another condition for merge is the distance between the two

clusters. In order to merge them they should be close enough

to each other. We compute the center of gravity of each cluster

and compute the distance to the best line fit of the other cluster.

Minimum of these two distances is the metric we use to see

how close the clusters are.

F. Algorithm

Proposed scheme uses an online algorithm to cluster the

incoming timestamp values into lines. Detailed algorithm is

given in Algorithm 1. Each cluster represents a line which

represents a machine in the ideal case. A buffer of size N is

used to store the packets. Initially, incoming packets are placed

in the buffer and clustering is performed when the buffer

reaches threshold number of packets for the first time. Once

the clusters are created, a line L representing the points in that

cluster is computed using least squares fit. For each incoming

packet, binary search is used to find the closest line to it. If

the distance between the packet and the closest line is < κ,

the packet is inserted into that cluster and the line equation

is updated. Lines are sorted according to current time and

reorganized if the order changes. Packets that do not fit any of

the clusters are kept in the buffer and the clustering process is

repeated when the buffer reaches the dynamic threshold again.

We have a minimum cluster size k and clusters with size less

than the threshold k are destroyed and packets are inserted

back into the buffer. This recovers from potential errors in

clustering process.

Clustering process is explained in Algorithm 2. This algo-

rithm is called whenever the buffer size reaches the dynamic

buffer threshold value. Binary search is used to find the closest

cluster and a metric ǫ is computed to check how good the fit

is. If the point is a good fit based on the value of ǫ, and

the timestamp property is satisfied, it is added to this closest

cluster. Otherwise, it constitutes the first point of a new cluster.

The computation of distance from a packet to the closest

cluster is based on the number of points in the cluster. If there

is only one packet in the cluster, then the euclidean distance

is used. If there are two or more points in the cluster, then the

distance to the least squares fit line is computed.

When a new packet is added to the cluster, the value of the

variables
∑

(Xi)
2,
∑

Xi,
∑

Yi,
∑

(Xi ∗Yi) and i are updated

and new least-squares line fit is computed. In addition, the

convex hull of the cluster is updated if necessary.

If no packet has been received from a previously detected

machine for a certain amount of time, it is marked as inactive

and removed from the set of active nodes. Convex hull always

includes the last packet sent from a machine and time value

of last packet is used to detect whether the cluster is active.

Internet

Primergy

Gateway

NAT

switch

5i
Extreme

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

Fig. 7. Network Setup

V. EXPERIMENTAL RESULTS

In this section, we provide experimental results for the

proposed scheme using the system in Figure 7. We tested

the system in two different ways; first using synthetic packet

sending tool running on a single machine behind NAT, second

using real traffic generated by the machines behind NAT.

Algorithm 1 Detect number of machines behind NAT device

1: // k; min number of points to cluster

2: // ǫi; max error to be accepted for closeness to line i

3: // κ; error constant

4: // clusterThreshold; Initially equals to Buffer Size, N

5: malloc buffer[N]

6: clusters ← ∅
7: lines ← ∅
8: while newPacketCaptured() do

9: fitsToLine ← false

10: if newPacket.Time > nextIntersection.Time then

11: lines ← reorganizeLines(lines, newPacket.Time)

12: nextIntersection ← foundNextIntersection(lines)

13: closestLine ← binarySearchClosestLine(packet)

14: dist ← distance(packet, closestLine)

15: if dist < κ then

16: updateLineEquation(packet, closestLine)

17: fitsToLine ← true

18: if fitsToLine ≡ false then

19: buffer.append(newPacket)

20: if buffer.size() == clusterThreshold then

21: for all packetInBuffer p=1 to N do

22: closestLine← binarySearchClosestLine(packet)

23: if distance(p, closestLine) < κ then

24: updateLineEquation(p, closestLine)

25: removePacketFromBuffer(p)

26: clusters ← clusterBuffer(buffer[N])

27: buffer.clear()

28: for all clusters i=1 to K do

29: if clusters.get(i).numberOfElements < k then

30: buffer.append(clusters.get(i).allPoints())

31: clusters.remove(i)

32: clusterThreshold ← updateClusterThreshold(

buffer.size())

33: newLines ← lineF it(clusters)

34: newLines ← sort(newLines, newPacket.Time)

35: lines ← combineSortedLines(newLines, lines)

36: lines ← mergeLines(lines)

37: lines ← checkInactiveLines(lines)

38: NumMachines ← lines

A. Capture Filter

Our goal is to develop a light-weight high performance tool

to count the number of nodes behind the NAT device. Proper

specification of packet filter is essential for high throughput

packet processing. A packet filter is a kernel facility to classify

packets on the line and forward the packets selected by the

filter to user applications without traversing the network stack.

For sending and capturing packets, we used

Jpcap [1] library. Jpcap uses pcap (libpcap/WinPcap)

filter language as a capture filter and there is

setF ilter(stringfilterExpression, booleanoptimize)
method in jpcap library to create, compile and activate a filter

from a filter expression. Utilizing this function, we set an

Algorithm 2 clusterBuffer(buffer[])

1: clusters ← ∅
2: for all packets in buffer i = 1 to N do

3: if clusters.size() > 0 then

4: closestCluster← binarySrchClosestClstr(buffer[i])

5: dist← distanceToCluster(closestCluster, buffer[i])

6: numOfPoints ← closestCluster.size()

7: if numOfPoints == 1 then

8: ǫ ← threshold × κ

9: else

10: ǫ ← κ

11: if dist < ǫ then

12: closestCluster.appendToCluster(buffer[i])

13: else

14: clusters.append(new Cluster(buffer[i]))

15: else

16: clusters.append(new Cluster(buffer[i]))

17: return clusters

efficient kernel level filter for selecting timestamped packets.

B. Synthetic Tool Experiments

We first wanted to test our scheme implementing a packet

sending tool that can simulate the timestamp behavior of

several different machines. Although this tool runs on one

of the machines behind NAT device in Figure 7, it is able

to generate outbound network traffic of hundreds of machines

by sending crafted packets.

1) Packet Sending Tool: In order to test our proposed

system, we created a tool to send artificially timestamped

packets with different source IP addresses to a specified

destination IP address. For packet creation, we used Jpcap

library. There are two IP lists in our testing system. The first

IP list, ChoosenList, includes the source IPs which are used

to send a packet before. The second IP list, AvailableList,

has source IPs that has never been used to send a packet. In

the initial phase, the AvailableList includes specified number

of source IPs but the ChoosenList is empty. For each source

IP in the AvailableList, a random timestamp value ranging

from 1 to 109 is assigned. Once an IP is chosen from the

AvailableList, that IP is extracted from AvailableList and

put into the ChoosenList. We use a variable p which is the

probability of sending a packet from a chosen IP picked up

from the ChoosenList. Finally, we send the packets from

chosen source IP to the specified destination IP with the chosen

value of burst length. For each source IP address, there is a

counter to keep track of the number of packets sent from that

specific source IP address. The reason for counter is that it

is difficult to detect machines that sent only a few packets.

Therefore, we defined a threshold value t and each source

IP address sends at least t packets. When the AvailableList

becomes empty and all the source IPs in the ChosenList used

to send at least t packets, test program terminates.

2) Number of Machines Detected: We plotted actual num-

ber of machines sending packets (#Machine Sent), number of

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400

N
u
m

b
e
r

o
f
M

a
c
h
in

e
s

Time(seconds)

Time vs Number of Machines

#Machine Detected
#Machine Sent

#MachinesOverThreshold

(a) Linux=%30, Windows=%70

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400

N
u
m

b
e
r

o
f
M

a
c
h
in

e
s

Time(seconds)

Time vs Number of Machines

#Machine Detected
#Machine Sent

#MachinesOverThreshold

(b) Linux=%70, Windows=%30

Fig. 8. Effect of Linux/Windows Ratio, for P=0.6

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400

N
u
m

b
e
r

o
f
M

a
c
h
in

e
s

Time(seconds)

Time vs Number of Machines

#Machine Detected
#Machine Sent

#MachinesOverThreshold

(a) Probability=0.6

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400 450 500

N
u
m

b
e
r

o
f
M

a
c
h
in

e
s

Time(seconds)

Time vs Number of Machines

#Machine Detected
#Machine Sent

#MachinesOverThreshold

(b) Probability=0.8

Fig. 9. Effect of P, for Linux/Windows Ratio=%50

machines sending at least threshold number of packets (#Ma-

chinesOverThreshold) and the number of machines detected by

proposed scheme (#Machine Detected). Figure 8 shows results

for p = 0.6. As shown in the figure, proposed scheme closely

approximates the number of machines if each machine sends

at least threshold number of packets, which was set to 5. We

also looked at the effect of p on the results. New machines are

introduced at a slower rate for large values of p. The results

are given in Figure 9. Detected machine count is closer to the

actual count when p is higher. Number of machines detected

for different minimum cluster size given in Figure 10. When

a higher value is used for minimum cluster size, the accuracy

is slightly better. Experiments show that the value of κ does

not have a large impact on the number of machines detected

However, the number of machines are overestimated when κ

is set too low.

3) Buffer Size: We investigated the effect of various pa-

rameters on the number of packets in the buffer over time.

The effect of p is given in Figure 11. When machines are

introduced at a slower rate, the size of the buffer is smaller

since clusters are more likely to have more than threshold

packets necessary to form a cluster. As shown in the Figure 12,

when lower value is used for κ, packets that are further away

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400

N
u
m

b
e
r

o
f
M

a
c
h
in

e
s

Time(seconds)

Time vs Number of Machine

#Machine Detected
#Machine Sent

#MachinesOverThreshold

(a) Minimum Cluster Size=3

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400

N
u
m

b
e
r

o
f
M

a
c
h
in

e
s

Time(seconds)

Time vs Number of Machines

#Machine Detected
#Machine Sent

#MachinesOverThreshold

(b) Minimum Cluster Size=5

Fig. 10. Effect of Minimum Cluster Size

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

B
u
ff
e
r

S
iz

e

Time(seconds)

Time vs Buffer Size

#Points

(a) Probability=0.6

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450 500

B
u
ff
e
r

S
iz

e

Time(seconds)

Time vs Buffer Size

#Points

(b) Probability=0.8

Fig. 11. Effect of P on Buffer Size, for Linux/Windows Ratio=%50

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900

B
u
ff
e
r

S
iz

e

Time(seconds)

Time vs Buffer Size

#Points

(a) Kappa=10

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900

B
u
ff
e
r

S
iz

e

Time(seconds)

Time vs Buffer Size

#Points

(b) Kappa=50

Fig. 12. Effect of Kappa on Buffer Size, with Machine Size=255

from the cluster end up in the buffer increasing the number

of packets in the buffer. These packets remain in the buffer

at the end of experiment since these outlier packets do not fit

any cluster. When minimum cluster size is larger, packets stay

in the buffer longer increasing the buffer size.

4) Impact of Epsilon: We investigated how the value of ǫ

(distance from most distant node of convex hull to the line)

changes for each cluster and over time. The results are given

in Figure 13. Figure 13(a) shows the values for κ = 10. The
largest ǫ observed in a cluster is 1.8. Majority of the values

are less than 0.5 indicating that the clusters are compact.

The change of ǫ over time for a single cluster is given in

Figure 13(b). The values of ǫ changes over time and it can

both increase and decrease when nodes are added.

C. Experiment on a Real Network Environment

We also verify that our implementation of proposed scheme

works on a real network environment. For this purpose a

gateway machine running Debian/Linux was configured as a

NAT device and 2 Windows, 9 Linux machines are connected

to this NAT gateway over a switch to access web over it. This

setting is depicted in Figure 7. Setup included Windows and

Linux machines to test how our program handles different

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300

E
p
s
ilo

n

Cluster ID

Cluster ID vs Epsilon

Epsilon

(a) Epsilon of each cluster at the end

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700 800 900

E
p
s
ilo

n

Time(seconds)

Time vs Epsilon

Epsilon

(b) Change of Epsilon for a line

Fig. 13. Impact of Epsilon

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

#
M

a
c
h
in

e
s

Time (seconds)

1min start interval - 9linux 2windows

detectedMachines
Real # Machines

(a) Number of Machines

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

B
u
ff
e
rS

iz
e

Time (seconds)

1min start interval - 9linux 2windows

BufferSize

(b) Buffer Size

Fig. 14. One minute interval between each connection

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350

#
M

a
c
h
in

e
s

Time (seconds)

At the same time - 9linux 2windows

detectedMachines
Real # Machines

(a) Number of Machines

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350

B
u
ff
e
rS

iz
e

Time (seconds)

At the same time - 9linux 2windows

BufferSize

(b) Buffer Size

Fig. 15. All connections established at the same time

operating systems. Due to lack of equipment we could not

extend the experiment with more machines.

Two different experiments are conducted on this network

setup. In the first experiment shown in Figure 14, connections

from the machines behind NAT gateway are established with

one minute intervals. After about 11 minutes, all of the

machines are sending packets over NAT. On the second ex-

periment, machines established their connection with a remote

machine at the same time. With these experiments, scaling of

the implementation was tested and as could be seen in the

Figure 15 program was able to handle the connections quite

well even if all the machines generate traffic at the same time.

When we look closer in Figure 14, program detects the

number of machines precisely when its buffer gets filled up

since only at that moment captured timestamps in the buffer

are clustered. After all the machines are introduced, number of

unmatched packets in the buffer stabilizes, because captured

timestamps are found to belong to an already detected machine

represented as a cluster.

Figure 15, shows another scenario with a more frequent

machine introduction rate, in which program detects the

number of machines precisely after it clusters the buffer. In

Figure 15(b) the number of packets in the buffer increases

slowly between 50-150 second interval since there is only

one undetected machine during that time. When the buffer

fills up, program clusters the packets and detects the last

machine. In both figures, packets that are not close enough to

any machine’s line equation remain in the buffer for a certain

amount of time, then they are discarded completely. Reducing

the buffer size will enhance the spontaneity of the program,

while overloading it with more frequent clustering operations.

VI. CONCLUSION

Many applications benefit from accurate count of active

nodes behind a NAT device. However, existing schemes are

limited. In this paper, we use TCP timestamp option to count

the number of active nodes. Timestamp option includes current

timestamp of the machine in the TCP packet. We propose

an efficient scheme that counts the number of machines

approximately using clustering of timestamps. We use least-

squares line fit of timestamp values and convex hulls to

maintain limited information about existing clusters. Proposed

scheme is online and requires minimal resources. We have

investigated various aspects of the scheme to improve its

performance and by combining methods from different areas

of computer science we developed a novel approach. Using

a developed tool to send packets we have observed that the

proposed scheme approximates the number of machines that

send more than threshold number of packets well. Proposed

scheme further tested on a real environment of networked

computers. Future work includes improving the performance

and accuracy of the tool further.

REFERENCES

[1] A java library for capturing and sending network packets. URL:
http://netresearch.ics.uci.edu/kfujii/Jpcap/doc/index.html.

[2] S. M. Bellovin. A technique for counting natted hosts. In Internet
Measurement Workshop, pages 267–272, 2002.

[3] J. Bi, M. Zhang, and L. Zhao. Security enhancement by detecting
network address translation based on instant messaging. In Emerging
Directions in Embedded and Ubiquitous Computing, pages 962–971,
2006.

[4] J. Bi, M. Zhang, and L. Zhao. Application presence information
based source address transiton detection for edge network security and
management. In International Journal of Computer Science and Network
Security, page 147, 2007.

[5] J. Bi, L. Zhao, and M. Zhang. Application presence fingerprinting
for nat-aware router. In Knowledge-Based Intelligent Information and
Engineering Systems, pages 678–685, 2006.

[6] E. Bursztein. Time has something to tell us about network address
translation. In Nordic Workshop on Secure IT Systems, Nov. 2007.

[7] M.I. Cohen. Source attribution for network address translated forensic
captures. Digital Investigation, 5(3-4):138 – 145, 2009.

[8] Chih-Yuan Wang Hsuan-Yu Huang Ding-Jie Huang, Wei-Chung Teng
and Joseph M. Hellerstein. Clock skew based node identification in
wireless sensor networks. In IEEE GLOBECOM 2008, 2008.

[9] K. Egevang and P. Francis. RFC1631: The ip network address translator
(nat), 1994.

[10] V. Jacobson, R. Braden, and D. Borman. RFC1323: Tcp extensions for
high performance.

[11] Tadayoshi Kohno, Andre Broido, and K. C. Claffy. Remote physical
device fingerprinting. In In IEEE Symposium on Security and Privacy,
pages 211–225. IEEE Computer Society, 2005.

[12] Li Erran Li, Aiyou Chen, Tian Bu, and Scott Miller. Detecting
subscribers using nat devices in wireless data networks. Bell Lab. Tech.
J., 14(2):223–233, 2009.

[13] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba,
and Kumar Das. The 1999 darpa off-line intrusion detection evaluation.
Comput. Netw., 34(4):579–595, 2000.

[14] P. Srisuresh and K. Egevang. RFC3022: Traditional ip network address
translator (traditional nat), 2001.

[15] P. Srisuresh and M. Holdrege. RFC2663: Ip network address translator
(nat) terminology and considerations, 1999.

[16] O. Zakin, M. Levi, Y. Elovici, L. Rockach, N. Shafrir, G. Sinter, and
O. Pen. Identifying computers hidden behind a nat using machine
learning techniques. In The 6th European Conference on Information
Warfare and Security, pages 335–340, 2007.

[17] L. Zhao, M. Zhang, J. Bi, and J. Wu. Detecting private address space
based on application layer information. In The First IEEE Workshop

on Adaptive Policy-based Management in Network Management and
Control, April 2006.

