Approximating the Number of Active Nodes Behind
a NAT Device

Ali Tekeoglu, Nihat Altiparmak, Ali Saman Tosun
Department of Computer Science
University of Texas at San Antonio
San Antonio, TX, 78249
Email: {tekeoglu,naltipar,tosun}@cs.utsa.edu

Abstract—Network Address Translation (NAT) is used for
various reasons on the Internet and hides the IP address
and number of nodes behind the NAT device. Although many
applications benefit from the knowledge of number of active
nodes behind a NAT device, existing schemes are limited. In
this paper, we use TCP timestamp option to count the number
of active nodes. Timestamp option includes current timestamp
of the machine in the TCP packet. We propose an efficient
scheme that counts the number of machines using clustering of
timestamps. We use least-squares line fit of timestamp values and
convex hulls to efficiently maintain the crucial information about
existing clusters. Proposed scheme is online and requires minimal
resources. We have investigated various aspects of the scheme to
improve its performance. Using a developed tool to send packets,
we have observed that the proposed scheme approximates the
number of machines that send more than threshold number of
packets well. Real experiments validate the proposed scheme.

I. INTRODUCTION

NAT (Network Address Translation) [15] [14] [9] is the
translation of an IP address used within one network to a
different IP address known within another network. Although
any machine that implements a NAT software can behave as
a NAT device, it is generally implemented in routers. When a
packet comes in to a NAT device, its ”Destination IP” field is
rewritten prior to forwarding it to a host behind NAT machine.
The NAT software will keep track of this translation in a built-
in table, and when the host sends a reply, it will translate back
the other way.

Counting or approximating the number of active hosts
behind a NAT device is important for many reasons. First
of all, an ISP may want to know the number of computers
connected to the Internet using a single IP address. Secondly,
systems that need to grant certain privileges depending on
the IP address, might need to know the exact number of
clients using their services over that IP address. For instance,
our starting point was monitoring the requests to streaming
servers. A single client can overwhelm a streaming server by
opening large number of RTSP connections. We can monitor
the number of connections for each machine easily and place
restrictions. However, nodes behind a NAT require special
treatment since all of them appear to have the same IP address.

Partially Supported by US National Science Foundation (NSF) Grants CCF-
0702728, CNS-0855247

Thus, the limits placed on NAT devices should be based on
the number of active nodes behind a NAT device.

II. RELATED WORK

Recently, several papers on how to detect and approximately
count the number of hosts behind a NAT device are published.
In [2] and [7], IP header’s ID field is used to differentiate
hosts. This method works if the ID field is used as a simple
counter as in Windows; however, most of the OSes do not
implement the ID field as a counter. For example, Linux
uses constant 0 and OpenBSD uses a random number for ID
Field. Method presented in [6] relies on the TCP timestamp
option. They present a simple way to compute the number of
hosts behind a NAT, however their work does not include any
experimental results nor do they evaluate the correctness of
their methods. They try to find the number of increments per
second’ for each different machine and represent temestamp
as a linear function; timestamp = numinbysec * sec +
initialTimestamp. The line equations found are kept and
described as a different machine. Their method to find the
numinbysec is not robust and they rely on the line equation
they formed using only the initial two packets; however, it is
not realistic in a real network environment. In [11] authors
presented a novel way to fingerprint devices using clock
skews. They basically capture packets from the suspected
machine and extract time dependent information from TCP
Timestamp Options field and calculate unique clock skew for
each device. They claim that one can use their clock skew
detection methods to count the number of devices behind a
NAT. However, their suggested technique works offline on
packet traces and they did not provide neither implementation
nor experimental results supporting their approach. Clock skew
idea is expanded into a wireless setting in [8] to identify NAT
devices in Wireless Sensor Networks. In [12] authors make
use of IP-ID fields to detect subscribers using NAT devices
in wireless networks. Another methodology is described in
the following papers [17], [3], [5] and [4], in which authors
utilized application layer information to discover NAT devices.
They assume that instant messaging is one of the most popular
softwares so they make use of instant messaging network
packets to detect a NAT device. Machine learning techniques
are used in [16]. They put the packets of suspected device
through several analyzers. Each analyzer tries to determine

U.S. Government work not protected by U.S. copyright

whether packets originate from users behind a NAT de-
vice. Analyzers are implemented making use of previously
mentioned methods including IP-ID field, TCP Timestamps,
Application Layer Information and Clock Skews. We present
a solution to this problem using another approach which in
turn requires less computational and spatial overhead than the
other methods mentioned above. We support our idea with
the implementation of the concept and provide experimental
results for evaluation.

In this paper, we use clustering of timestamps to count
the number of machines behind a NAT device. The rest of
the paper is organized as follows: In Section III we give
background information about the TCP timestamp option.
Proposed scheme is explained in Section IV and experimental
results are given in Section V. We conclude our paper with
Section VI.

ITII. BACKGROUND
A. Timestamp Option Field on TCP Header

Timestamp is a TCP option defined in RFC1323 [10], which
carries two four-byte timestamp fields; the Timestamp Value
field (TSval) and the Timestamp Echo Reply field (TSecr).
TSval contains the current value of the timestamp clock of
the TCP stack sending the option. When TSecr is not valid,
its value must be zero. TSecr echos a timestamp value in
the TSval field of a packet that was received from a remote
machine at the other end of the TCP connection. TSecr is only
valid if the ACK bit is set in the TCP header. Timestamps are
created to be used for two distinct mechanisms: round trip time
measurement and protect against wrapped sequences. A TCP
stack may send the Timestamp option (TSopt) in an initial
<SYN> segment and may send a TSopt in other segments
only if it received a TSopt in the initial <SYN> segment for
the connection.

B. Timestamps in Different Operating Systems

Different operating systems increment their timestamp clock
in different periods. Linux started to support timestamp with
kernel 2.1.9 and the initial value of timestamp is set to O
when the system boots up. TSval in Linux is incremented
every 10 milliseconds. Windows supports the TCP timestamp
option starting with Windows 2000. TSval in Windows is O
during the 3-way handshake but after the syn/ack handshake
is complete, TSval is incremented every 100ms starting from
an initial random number. Solaris supports timestamp starting
from Solaris 2.5 with a frequency of 100 ticks/second. MacOS
and OpenBSD also implement this option in a similar way as
the above operating systems.

Since timestamps are incremented regularly with respect to
time, time versus timestamp plots look like linear lines as
shown in Figure 1. Each linear line in this plot, actually,
corresponds to a separate machine. Two different machines
would have the exact same line only in the unlikely case that
their timestamps start from the same value at the same time
and their OSes would have the same increment frequency.
Since measurement is done at a different node than the one

Timestamps used by machines behind NAT

1.6e+09 T T T T T
(ubuntuy) +
1.4e+09 [(ubuntuy) x .
(winXPy) x
2 1.2e+09 (ubuntuz) © B
=] 16409 (ubuntuy) = i
S e+ (ubuntug) o ——
g 8e+08 WWW i
£ ees08 | g
[0}
E 4e+08 m;lnmmlllml-— . a
2e+08 & o !
0

150000 300000 450000 600000 750000
Time (seconds)

Fig. 1. Time behaviour of Timestamps

which generates the timestamp, there is some variation caused
by network latency. We use these time vs timestamp graphs
to count the number of distinct machines. Slope of Windows
and Ubuntu machines are different as shown in the Figure 1
and a rebooted machine starts with a random timestamp value
in the case of Windows or starts from 0O in case of a Linux
machine.

Change of Epsilon by Time
1000

100

10

EpsilonValues

1 1
150000 300000 450000 600000 750000
Time (seconds)

0.1

Fig. 2. Error from Line Fit

Due to delays and errors in measurements, time versus
timestamp is not a linear line. Errors from least square line
fit are shown in Figure 2 for the machines in Figure 1. Error
or epsilon value, is defined as the maximum vertical distance
of packets in the convex hull to the fitted line at the time
a new packet is received. As shown in the figure Windows
machine results in higher error than Ubuntu machines. Error
values are proportional to the network congestion and they
gradually increase during a long trace period, for instance the
trace plotted in Figure 2 is taken over a week.

IV. PROPOSED SCHEME

Our proposed scheme works by clustering timestamps of
received packets into lines using least-squares line fit. It
maintains convex hull of points to determine the quality of
the clusters and to find the maximum distance to the lines.
In order to improve performance we sort the lines according
to time and reorganize them if the sort order changes. Last
component of the approach is a merge operation that merges

clusters if they are very close to each other. We next describe
these pieces in detail and finally we provide our algorithm.

A. Timestamp Property

Timestamp

Fig. 3.

Timestamp Property

Timestamp property requires that if two packets are from
the same machine then the one with higher time value should
have a larger timestamp. Consider Figure 3 for an example. In
this figure packets A and B satistify the timestamp property.
Packets D and A satisfy the property as well. However, neither
A and C nor F' and A satisfy the timestamp property. We
make use of this property in proposed scheme when forming
clusters, adding points to the clusters and merging clusters.

B. Least-squares Line Fit

In order to fit the data points ((X;,Y;) = (time, TSval))
into a straight line, we used linear least squares fitting method.
The reason we are using this method is that it is calculated
on the fly with a few fast operations. Using linear algebra, we
can find the values of m and b, which gives us the equation
of the best fitting line; y = mx + b.

Using this approach, we can update the best fitting line
and threshold value on the fly while we capture new packets.
Individual packet information need not be stored. The compu-
tation can be done in an efficient way using limited space. We
maintain > (X;)%, Y X;,>"Y;, SI(X; % Y;) and 4 for each
cluster. When new packets are received, these variables are
updated based on the new packet (X;,Y;). This approach is
computationally efficient since it just requires a few additional
calculations to update the best fitting line and the threshold
value.

C. Convex Hull

We used Convex Hull data structure to maintain boundary
information about each cluster. Its use let us store minimal
information. Instead of storing all points, convex hull contains
the outer boundary points for each cluster. Convex hull of a
set S is the smallest convex set that contains S.

Convex hull offers multiple advantages for our purpose.
First, a small set of points are on the convex hull and they
can easily be stored. In addition, using convex hull, maximum
distance to the line can be computed easily since maximum
distance from a data point to a line occurs at one of the points
on the convex hull. Thus, to compute the maximum distance
from a point set S to a dynamic line L, it suffices to store the
convex hull CH(S) of the point set .S.

Only a small number of points end up being in the convex
hull and this reduces the space requirement to compute the

#of Points In Each Convex Hull

22

X T :
(ubuntuy) —+—
2or (ubumu;) oo]
18 WinXP?) x|
(ubuntug) &
°r (ubuntuy) —-=—
g 4f (ubuntug) ---o-- |
s ; %* (ubuntug) - -e-- -
£ 12 FE 1
£ 10} % |
8k i |
6
4 p— - :
2 ! : .

150000 300000 450000 600000 750000
Time (seconds)

Fig. 4. Number of Points in Convex Hull

maximal distance. For the trace given in Figure 1 the number
of points on the convex hull is given in Figure 4. Number of
points on convex hull for Ubuntu machines is less than 10 and
typically 3-6. For the single Windows machine we have the
number of points on the convex hull goes as high as 22 and
typically less than 15.

D. Line Sorting

lh
l2
Y ls
3
Y2 la
Y1
Yo
0 t1 [2
Fig. 5. Line Sorting

When a new packet is received, it needs to be compared
with the existing clusters/lines in the system to find the best
fitting line. This operation costs O(N) if brute-force scheme
is used. It is possible to reduce the complexity to O(log N)
by sorting at a specific time. However, the sort order may
change since lines have different slopes and can intersect each
other. An example is given in Figure 5. At time t(the order
of corresponding points are lines, liney, liney, line2. At time
t1; line; and liney intersect and the order changes after this
point. The way we handle this is based on maintaining the
closest intersection point. Lines are sorted at current time value
and closest intersection point of consecutive line intersections
is maintained. Closest intersection point can be computed in
O(N) time if the lines are sorted and the sort order remains
the same until the closest intersection point.

When new clusters are formed, new lines are added to
the existing set of lines. We need a mechanism to find the
closest line in this dynamic setting. Above scheme can easily
be extended to include new lines. Consider Figure 6 for an
example. A new line shown with dots is added. We can find
its position at time ¢ and add it in its proper location. We also
need to update closest intersection time since it can be closer
than the previous value as shown in the Figure 6. The only

Iy lnew
T
3
Y3 I
Yo
[40) t/tl 1,” [

Fig. 6. Line Sorting with new line

intersections that need to be considered are the intersections
of new line with the line above it and with the line below it.
In this example, intersection of new line with line 4, which is
above it, reduces the closest intersection point to time ¢/ from
t.

Above discussion assumes that the lines are static once they
are added. In reality, we update the lines as new points are
added to the cluster. When a line is updated we need to find
its intersection with the line above it and with the line below
it and update the closest intersection point if necessary. This
results in constant amount of work independent of the number
of lines.

E. Merging Clusters

Based on the value of parameters used, sometimes packets
for a given machine are split into multiple clusters/lines.
Our approach is to detect these cases and merge the two
clusters/lines. We use least square line fit for the set of points
and maintain only the points on the convex hull for each
cluster. When the clusters are merged, least square line fit
and the convex hull needs to be updated to reflect the merge
operation. To find the least squares line fit online we maintain
S(X0)2 S X)) Vi, (X, +Y;) and i for each cluster. By
combining the values for two separate clusters we can find the
least squares fit for the combined cluster. Constructing convex
hull is easy as well. Convex hull of the union of two sets
is equal to the convex hull of the union of the convex hulls
of two subsets. These two properties make merge operation
accurate as if all the points are maintained.

Before merging two clusters, we first check whether the two
clusters logically belong to the same machine. We use times-
tamp property during the merge operation as well. Consider
two clusters Cy and C5 and let H; and L; denote the high and
low points of cluster ¢. If time of L; is larger than the time of
H, then timestamp of L; should be larger than timestamp of
Hy, as well. Similarly, If time of Lo is larger than the time of
H, then timestamp of Ly should be larger than timestamp of
H, as well. If these two properties are true then we call the
clusters mergable.

Another condition for merge is the distance between the two
clusters. In order to merge them they should be close enough
to each other. We compute the center of gravity of each cluster
and compute the distance to the best line fit of the other cluster.
Minimum of these two distances is the metric we use to see

how close the clusters are.

F. Algorithm

Proposed scheme uses an online algorithm to cluster the
incoming timestamp values into lines. Detailed algorithm is
given in Algorithm 1. Each cluster represents a line which
represents a machine in the ideal case. A buffer of size IV is
used to store the packets. Initially, incoming packets are placed
in the buffer and clustering is performed when the buffer
reaches threshold number of packets for the first time. Once
the clusters are created, a line L representing the points in that
cluster is computed using least squares fit. For each incoming
packet, binary search is used to find the closest line to it. If
the distance between the packet and the closest line is < &,
the packet is inserted into that cluster and the line equation
is updated. Lines are sorted according to current time and
reorganized if the order changes. Packets that do not fit any of
the clusters are kept in the buffer and the clustering process is
repeated when the buffer reaches the dynamic threshold again.
We have a minimum cluster size £ and clusters with size less
than the threshold k are destroyed and packets are inserted
back into the buffer. This recovers from potential errors in
clustering process.

Clustering process is explained in Algorithm 2. This algo-
rithm is called whenever the buffer size reaches the dynamic
buffer threshold value. Binary search is used to find the closest
cluster and a metric € is computed to check how good the fit
is. If the point is a good fit based on the value of ¢, and
the timestamp property is satisfied, it is added to this closest
cluster. Otherwise, it constitutes the first point of a new cluster.

The computation of distance from a packet to the closest
cluster is based on the number of points in the cluster. If there
is only one packet in the cluster, then the euclidean distance
is used. If there are two or more points in the cluster, then the
distance to the least squares fit line is computed.

When a new packet is added to the cluster, the value of the
variables Y (X;)?%, 3> X;,3 Vi, S2(X; *Y;) and 4 are updated
and new least-squares line fit is computed. In addition, the
convex hull of the cluster is updated if necessary.

If no packet has been received from a previously detected
machine for a certain amount of time, it is marked as inactive
and removed from the set of active nodes. Convex hull always
includes the last packet sent from a machine and time value
of last packet is used to detect whether the cluster is active.

Fig. 7.

Network Setup

V. EXPERIMENTAL RESULTS

In this section, we provide experimental results for the
proposed scheme using the system in Figure 7. We tested
the system in two different ways; first using synthetic packet
sending tool running on a single machine behind NAT, second
using real traffic generated by the machines behind NAT.

Algorithm 1 Detect number of machines behind NAT device

1: // k; min number of points to cluster

2: / €;; max error to be accepted for closeness to line @
3: /] K; error constant
4: /I clusterThreshold; Initially equals to Buffer Size, N
5: malloc buffer[N]
6: clusters < ()
7: lines «

8: while newPacketCaptured() do

9: fitsToLine < false

10: if newPacket.Time > nextIntersection.Time then

11: lines < reorganizeLines(lines, newPacket.Time)
12: nextIntersection < foundN extIntersection(lines)
13: closestLine < binarySearchClosestLine(packet)

14: dist < distance(packet, closestLine)

15: if dist < k then

16: update Line Equation(packet, closestLine)

17: fitsToLine < true

18: if fitsToLine = false then

19: buffer.append(newPacket)

20: if buffer.size() == clusterThreshold then

21: for all packetInBuf fer p=1to N do

22: closestLine <— binarySearchClosest Line(packet)

23: if distance(p, closestLine) < « then

24: update Line Equation(p, closestLine)

25: removePacketF'romBuf fer(p)

26: clusters < cluster Buf fer(buffer[N])

27: buffer.clear()

28: for all clusters :=1 to K do

29: if clusters.get(i).numberO f Elements < k then

30: buffer.append(clusters.get(i).all Points())

31: clusters.remouve(i)

32: clusterThreshold < wupdateClusterT hreshold(
buffer.size())

33: newLines < lineF'it(clusters)

34: newLines < sort(newLines, newPacket.Time)

3s: lines < combineSortedLines(newLines, lines)

36: lines <— mergeLines(lines)

37: lines < checkInactive Lines(lines)

38: NumMachines < lines

A. Capture Filter

Our goal is to develop a light-weight high performance tool
to count the number of nodes behind the NAT device. Proper
specification of packet filter is essential for high throughput
packet processing. A packet filter is a kernel facility to classify
packets on the line and forward the packets selected by the
filter to user applications without traversing the network stack.

For sending and capturing packets, we used
Jpcap [1] library. Jpcap wuses pcap (libpcap/WinPcap)
filter language as a capture filter and there is

setFilter(string filter Expression, booleanoptimize)
method in jpcap library to create, compile and activate a filter
from a filter expression. Utilizing this function, we set an

Algorithm 2 clusterBuffer(bu f fer|])

1: clusters < ()
2: for all packets in buf fer i=1to N do
3. if clusters.size() > 0 then

4 closestCluster <— binarySrchClosestClstr(buffer[:])
5: dist < distanceT oCluster(closestCluster, buffer[:])
6: numOfPoints + closestCluster.szze()

7: if numOfPoints == 1 then

8: € < threshold x k

9: else

10: € < KR

11: if dist < ¢ then

12: closestCluster.appendT oCluster(buffer[:])

13: else

14: clusters.append(new Cluster(buffer[i]))

15: else

16: clusters.append(new Cluster(buffer[i]))

17: return clusters

efficient kernel level filter for selecting timestamped packets.

B. Synthetic Tool Experiments

We first wanted to test our scheme implementing a packet
sending tool that can simulate the timestamp behavior of
several different machines. Although this tool runs on one
of the machines behind NAT device in Figure 7, it is able
to generate outbound network traffic of hundreds of machines
by sending crafted packets.

1) Packet Sending Tool: In order to test our proposed
system, we created a tool to send artificially timestamped
packets with different source IP addresses to a specified
destination IP address. For packet creation, we used Jpcap
library. There are two IP lists in our testing system. The first
IP list, ChoosenList, includes the source IPs which are used
to send a packet before. The second IP list, AvailableList,
has source IPs that has never been used to send a packet. In
the initial phase, the AvailableList includes specified number
of source IPs but the ChoosenList is empty. For each source
IP in the AwailableList, a random timestamp value ranging
from 1 to 10° is assigned. Once an IP is chosen from the
AvailableList, that IP is extracted from AvailableList and
put into the C'hoosenList. We use a variable p which is the
probability of sending a packet from a chosen IP picked up
from the ChoosenList. Finally, we send the packets from
chosen source IP to the specified destination IP with the chosen
value of burst length. For each source IP address, there is a
counter to keep track of the number of packets sent from that
specific source IP address. The reason for counter is that it
is difficult to detect machines that sent only a few packets.
Therefore, we defined a threshold value ¢ and each source
IP address sends at least ¢ packets. When the AwvailableList
becomes empty and all the source IPs in the ChosenList used
to send at least ¢ packets, test program terminates.

2) Number of Machines Detected: We plotted actual num-
ber of machines sending packets (#Machine Sent), number of

Time vs Number of Machines
. 200 ———

Time vs Number of Machines
200 T T T

#Machine Detected
Machine Sent
#MachinesOverThreshold -

#Machine Detected
#Machine Sent
150 #MachinesOverThreshold -

100

Number of Machines
1

Number of Machines
3
3
T

50

o
0 50

L L L L L L L o kel
100 150 200 250 300 350 400 0 50

Time(seconds) Time(seconds)

(a) Linux=%30, Windows=%70 (b) Linux=%70, Windows=%30
Fig. 8. Effect of Linux/Windows Ratio, for P=0.6

100 150 200 250 300 350 400

Time vs Number of Machines
200 T T

Time vs Number of Machines

)
3
3

T T LI S A

#Machine Detected
lachine Sent

#MachinesOverThreshold -

T T T

#Machine Detected
Machine Sent

#MachinesOverThreshold -

Number of Machines
=) o
3 3
T T
L
Number of Machines
3 o
3 3
T T

@
3
T
L
@
3
T

S L P okl v 0
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 450 500
Time(seconds) Time(seconds)

(a) Probability=0.6 (b) Probability=0.8
Fig. 9. Effect of P, for Linux/Windows Ratio=%50

machines sending at least threshold number of packets (#Ma-
chinesOverThreshold) and the number of machines detected by
proposed scheme (#Machine Detected). Figure 8 shows results
for p = 0.6. As shown in the figure, proposed scheme closely
approximates the number of machines if each machine sends
at least threshold number of packets, which was set to 5. We
also looked at the effect of p on the results. New machines are
introduced at a slower rate for large values of p. The results
are given in Figure 9. Detected machine count is closer to the
actual count when p is higher. Number of machines detected
for different minimum cluster size given in Figure 10. When
a higher value is used for minimum cluster size, the accuracy
is slightly better. Experiments show that the value of x does
not have a large impact on the number of machines detected
However, the number of machines are overestimated when &
is set too low.

3) Buffer Size: We investigated the effect of various pa-
rameters on the number of packets in the buffer over time.
The effect of p is given in Figure 11. When machines are
introduced at a slower rate, the size of the buffer is smaller
since clusters are more likely to have more than threshold
packets necessary to form a cluster. As shown in the Figure 12,
when lower value is used for x, packets that are further away

Time vs Number of Machines
. 200 ———

Time vs Number of Machine
200 T T T

#Machine Detected —
#Machine Sent
#MachinesOverThreshold -

#Machine Detecled
hine Sent

I
3

#Mac
#MachinesOverThreshold -

o
3

Number of Machines
1

Number of Machines
3
3

0
100 150 200 250 300 350 400 0 50
Time(seconds)

100 150 200 250 300 350 400
Time(seconds)

(a) Minimum Cluster Size=3 (b) Minimum Cluster Size=5
Fig. 10. Effect of Minimum Cluster Size

Time vs Buffer Size

T T T 300 T T T T T T
#Points +

Time vs Buffer Size
300 T T T T

T
#Points +

250 q 250 q
200 4 2 g
g 00 ‘ 8 00
R RN
§ %/ % v/
100 (100 J B
] e
50 g 50 g
0 PR oW
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 450 500

Time(seconds) Time(seconds)

(a) Probability=0.6 (b) Probability=0.8

Fig. 11. Effect of P on Buffer Size, for Linux/Windows Ratio=%50

Time vs Buffer Size Time vs Buffer Size

600 T T T T T

T T T 300 T T T T T
#Points +

T T T
#Points +

s, |

- 4

Buffer Size
1
Buffer Size
@

3

+

100 200 300 400 500 600 700 800 900

0 . . 0
0 100 200 300 400 500 600 700 800 900 0
Time(seconds) Time(seconds)

(a) Kappa=10 (b) Kappa=50

Fig. 12. Effect of Kappa on Buffer Size, with Machine Size=255

from the cluster end up in the buffer increasing the number
of packets in the buffer. These packets remain in the buffer
at the end of experiment since these outlier packets do not fit
any cluster. When minimum cluster size is larger, packets stay
in the buffer longer increasing the buffer size.

4) Impact of Epsilon: We investigated how the value of e
(distance from most distant node of convex hull to the line)
changes for each cluster and over time. The results are given
in Figure 13. Figure 13(a) shows the values for x = 10. The
largest € observed in a cluster is 1.8. Majority of the values
are less than 0.5 indicating that the clusters are compact.
The change of € over time for a single cluster is given in
Figure 13(b). The values of € changes over time and it can
both increase and decrease when nodes are added.

C. Experiment on a Real Network Environment

We also verify that our implementation of proposed scheme
works on a real network environment. For this purpose a
gateway machine running Debian/Linux was configured as a
NAT device and 2 Windows, 9 Linux machines are connected
to this NAT gateway over a switch to access web over it. This
setting is depicted in Figure 7. Setup included Windows and
Linux machines to test how our program handles different

Cluster ID vs Epsilon
3 T T

Time vs Epsilon
T 3 T T T

Epsilon Epsion +
25 25 R 1
N
2 2 . L
c < .
5 5 s
% 15 R + T 4
& g iy et
T e i
" #
05 | ty 05 f+ g
. + L
o L et o el e
0 50 100 150 200 250 300 0 100 200 300 400 500 600 700 800 900

Cluster ID Time(seconds)

(a) Epsilon of each cluster at the end(b) Change of Epsilon for a line
Fig. 13. Impact of Epsilon

1min start interval - 9linux 2windows 1min start interval - 9linux 2windows

14 T T

r T 100 . - . —r
detectedMachines : BufferSize
12| Real # Machines]
S— 80 - 1
10+ I R
a o
8 8 60l 1
£ 87 i e
S 5
g $
6 . 45 L |
S 2 40 ;
WL ” | [y
20 ; 1
2 ‘]
0 0

. . . . H . . .
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (seconds) Time (seconds)

(a) Number of Machines (b) Buffer Size

Fig. 14. One minute interval between each connection
At the same time - 9linux 2windows At the same time - Slinux 2windows
14 : : T T T : 100 —— : T T T T
detectedMachines BufferSize
121 Real # Machines 4 90 - 1
— 80 -
1) S S 1 wf ,
g sl 18 eor 1
5 3 50 4
S s 15
® a 40r]
4k 4 30 | E
20 - 1
2 1 0 i 4
o ‘ ‘ ‘ o A ‘

L L L L L
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Time (seconds) Time (seconds)

(a) Number of Machines (b) Buffer Size
Fig. 15. All connections established at the same time

operating systems. Due to lack of equipment we could not
extend the experiment with more machines.

Two different experiments are conducted on this network
setup. In the first experiment shown in Figure 14, connections
from the machines behind NAT gateway are established with
one minute intervals. After about 11 minutes, all of the
machines are sending packets over NAT. On the second ex-
periment, machines established their connection with a remote
machine at the same time. With these experiments, scaling of
the implementation was tested and as could be seen in the
Figure 15 program was able to handle the connections quite
well even if all the machines generate traffic at the same time.

When we look closer in Figure 14, program detects the
number of machines precisely when its buffer gets filled up
since only at that moment captured timestamps in the buffer
are clustered. After all the machines are introduced, number of
unmatched packets in the buffer stabilizes, because captured
timestamps are found to belong to an already detected machine
represented as a cluster.

Figure 15, shows another scenario with a more frequent
machine introduction rate, in which program detects the
number of machines precisely after it clusters the buffer. In
Figure 15(b) the number of packets in the buffer increases
slowly between 50-150 second interval since there is only
one undetected machine during that time. When the buffer
fills up, program clusters the packets and detects the last
machine. In both figures, packets that are not close enough to
any machine’s line equation remain in the buffer for a certain
amount of time, then they are discarded completely. Reducing
the buffer size will enhance the spontaneity of the program,
while overloading it with more frequent clustering operations.

VI. CONCLUSION

Many applications benefit from accurate count of active
nodes behind a NAT device. However, existing schemes are

limited. In this paper, we use TCP timestamp option to count
the number of active nodes. Timestamp option includes current
timestamp of the machine in the TCP packet. We propose
an efficient scheme that counts the number of machines
approximately using clustering of timestamps. We use least-
squares line fit of timestamp values and convex hulls to
maintain limited information about existing clusters. Proposed
scheme is online and requires minimal resources. We have
investigated various aspects of the scheme to improve its
performance and by combining methods from different areas
of computer science we developed a novel approach. Using
a developed tool to send packets we have observed that the
proposed scheme approximates the number of machines that
send more than threshold number of packets well. Proposed
scheme further tested on a real environment of networked
computers. Future work includes improving the performance
and accuracy of the tool further.

REFERENCES

[1] A java library for capturing and sending network packets. URL:
http://netresearch.ics.uci.edu/kfujii/Jpcap/doc/index.html.

[2] S. M. Bellovin. A technique for counting natted hosts.
Measurement Workshop, pages 267-272, 2002.

[3] J. Bi, M. Zhang, and L. Zhao. Security enhancement by detecting
network address translation based on instant messaging. In Emerging
Directions in Embedded and Ubiquitous Computing, pages 962-971,
2006.

[4] J. Bi, M. Zhang, and L. Zhao. Application presence information
based source address transiton detection for edge network security and
management. In International Journal of Computer Science and Network
Security, page 147, 2007.

[5] J. Bi, L. Zhao, and M. Zhang. Application presence fingerprinting
for nat-aware router. In Knowledge-Based Intelligent Information and
Engineering Systems, pages 678-685, 2006.

[6] E. Bursztein. Time has something to tell us about network address
translation. In Nordic Workshop on Secure IT Systems, Nov. 2007.

[7] M.IL Cohen. Source attribution for network address translated forensic
captures. Digital Investigation, 5(3-4):138 — 145, 2009.

[8] Chih-Yuan Wang Hsuan-Yu Huang Ding-Jie Huang, Wei-Chung Teng
and Joseph M. Hellerstein. Clock skew based node identification in
wireless sensor networks. In JEEE GLOBECOM 2008, 2008.

[9] K. Egevang and P. Francis. RFC1631: The ip network address translator

(nat), 1994.

V. Jacobson, R. Braden, and D. Borman. RFC1323: Tcp extensions for

high performance.

Tadayoshi Kohno, Andre Broido, and K. C. Claffy. Remote physical

device fingerprinting. In In IEEE Symposium on Security and Privacy,

pages 211-225. IEEE Computer Society, 2005.

Li Erran Li, Aiyou Chen, Tian Bu, and Scott Miller. Detecting

subscribers using nat devices in wireless data networks. Bell Lab. Tech.

J., 14(2):223-233, 2009.

Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba,

and Kumar Das. The 1999 darpa off-line intrusion detection evaluation.

Comput. Netw., 34(4):579-595, 2000.

P. Srisuresh and K. Egevang. RFC3022: Traditional ip network address

translator (traditional nat), 2001.

P. Srisuresh and M. Holdrege. RFC2663: Ip network address translator

(nat) terminology and considerations, 1999.

O. Zakin, M. Levi, Y. Elovici, L. Rockach, N. Shafrir, G. Sinter, and

O. Pen. Identifying computers hidden behind a nat using machine

learning techniques. In The 6th European Conference on Information

Warfare and Security, pages 335-340, 2007.

L. Zhao, M. Zhang, J. Bi, and J. Wu. Detecting private address space

based on application layer information. In The First IEEE Workshop

on Adaptive Policy-based Management in Network Management and

Control, April 2006.

In Internet

[10]

[11]

[12]

[13]

[14]
[15]

[16]

(171

